×

Phase transitions in tumor growth. VI: Epithelial-mesenchymal transition. (English) Zbl 1514.92042

Summary: Herewith we discuss a network model of the epithelial-mesenchymal transition (EMT) based on our previous proposed framework. The EMT appears as a “first order” phase transition process, analogous to the transitions observed in the chemical-physical field. Chiefly, EMT should be considered a transition characterized by a supercritical Andronov-Hopf bifurcation, with the emergence of limit cycle and, consequently, a cascade of saddle-foci Shilnikov’s bifurcations. We eventually show that the entropy production rate is an EMT-dependent function and, as such, its formalism reminds the van der Waals equation.
For Part V, see [R. R. Martin et al., ibid. 486, 762–771 (2017; Zbl 1499.92040)].

MSC:

92C50 Medical applications (general)
92C37 Cell biology
34D08 Characteristic and Lyapunov exponents of ordinary differential equations
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics

Citations:

Zbl 1499.92040
Full Text: DOI

References:

[1] Salami, J.; Crews, C. M., Waste disposal-An attractive strategy for cancer therapy, In Vitro Sci., 355, 1163-1167 (2017)
[2] Soto, A. M.; Maffini, M. V.; Sonnenschein, C., Neoplasia as development gone awry: the role of endocrine disruptors, Int. J. Androl., 31, 2, 288-293 (2008)
[3] Betancourt-Mar, J. A.; Llanos-Pérez, J. A.; Cocho, G.; Mansilla, R.; Martin, R. R.; Montero, S., Phase transitions in tumor growth: IV relationship between metabolic rate and fractal dimension of human tumor cells, Physica A (2017) · Zbl 1400.92243
[4] Izquierdo-Kulich, E.; Nieto-Villar, J. M., Morphogenesis and complexity of the tumor patterns, (Rubio, R. G., Without Bounds: A Scientific Canvas of Nonlinearity and Complex Dynamics Understanding Complex Systems (2013), Springer-Verlag: Springer-Verlag Berlin Heidelberg)
[5] Llanos-Pérez, J.; Betancourt-Mar, J.; Cocho, G.; Mansilla, R.; Nieto-Villar, J. M., Phase transitions in tumor growth: III vascular and metastasis behavior, Physica A, 462, 560-568 (2016) · Zbl 1400.92271
[6] Hanahan, D.; Weinberg, R., Hallmarks of cancer: the next generation, Cell, 144, 5, 646-674 (2011)
[7] Cao, H.; Xu, E.; Liu, H.; Wan, L.; Lai, M., Epithelial - mesenchymal transition in colorectal cancer metastasis : A system review, Pathol.- Res. Pract., 211, 8, 557-569 (2015)
[8] Kalluri, R.; Weinberg, R. A., The basics of epithelial-mesenchymal transition, J. Clin. Investig., 119, 6, 1420-1428 (2009)
[9] MacLean, A. L.; Harrington, H. A.; Stumpf, M. P.H.; Hmd, H., Epithelial-mesenchymal transition in metastatic cancer cell populations affects tumor dormancy in a simple mathematical model, Biomedicines, 2, 384-402 (2014)
[10] Manfredi, S.; Lepage, C.; Hatem, C.; Coatmeur, O.; Faivre, J.; Bouvier, A. M., Epidemiology and management of liver metastases from colorectal cancer, Ann. Surg., 244, 254-259 (2006)
[11] Alteri, R.; Bertaut, T.; Brooks, D., Cancer Facts & Figures 2015, 58-72 (2015), American Cancer Society: American Cancer Society Atlanta
[12] American Type Culture Collection (ATCC). ATCC Human cell lines.
[13] Boyer, B.; Thiery, J. P., Epithelium-mesenchyme interconversion as exampleof epithelial plasticity, APMIS, 101, 257-268 (1993)
[14] Thiery, J. P.; Acloque, H.; Huang, R. Y.; Nieto, M. A., Epithelial-mesenchymal transitions in development and disease, Cell, 139, 871-890 (2009)
[15] Burgess, D. J., Breast cancer: circulating and dynamic EMT, Nat. Rev. Cancer, 13, 148 (2013)
[16] Mak, P.; Leav, I.; Pursell, B.; Bae, D.; Yang, X.; Taglienti, C. A., ERbeta impedes prostate cancer EMT by destabilizing HIF-1 alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading, Cancer Cell, 17, 319-332 (2010)
[17] Zhu, W.; Cai, M. Y.; Tong, Z. T.; Dong, S. S.; Mai, S. J.; Liao, Y. J., Overexpression of EIF5A2 promotes colorectal carcinoma cell aggressiveness by upregulating MTA1 through C-myc to induce epithelial-mesenchymal transition, Gut, 61, 562-575 (2012)
[18] Brú, A., The universal dynamics of tumor growth, Biophys. J., 85, 5, 2948-2961 (2003)
[19] Nasir, N. A.; Kaiser, H. E., Selected Aspects of Cancer Progression: Metastasis, Apoptosis and Immune Response (2008), Springer Science & Business Media
[20] Thiery, J. P.; Sleeman, J. P., Complex networks orchestrate epithelial - mesenchymal transitions, Nature, 7, 131-142 (2006)
[21] Iglesias, P. A.; Ingalls, B. P., Control Theory and Systems Biology (2010), The MIT Press Cambridge: The MIT Press Cambridge Massachusetts - London · Zbl 1196.92017
[22] Magi, S.; Iwamoto, K.; Okada-Hatakeyama, M., Current status of mathematical modeling of cancer-from the viewpoint of cancer hallmarks, Curr. Opin. Syst. Biol., 3, 1-6 (2017)
[23] Araujo, R. P.; McElwain, D. L.S., A history of the study of solid tumour growth: the contribution of mathematical modelling, Bull. Math. Biol., 6, 5 (2004) · Zbl 1334.92187
[24] Frederickson, P.; Kaplan, J. L.; Yorke, E. D.; Yorke, J. A., The Lyapunov dimension of strange attractors, J. Differential Equations, 49, 2, 185-207 (1983) · Zbl 0515.34040
[25] Goldbeter, A., Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour (1997), Cambridge University Press
[26] Turner, C.; Kohandel, M., Investigating the link between epithelial-mesenchymal transition and the cancer stem cell phenotype: Amathematical approach, J. Theoret. Biol., 265, 329-335 (2010) · Zbl 1460.92059
[27] Turner, C.; Kohandel, M., Quantitative approaches to cancer stem cells and epithelial-mesenchymal transition, Semin. Cancer Biol., 22, 374-378 (2012)
[28] Anishchenko, V. S.; Vadivasova, T. E.; Okrokvertskhov, G. A.; Strelkova, G. I., Correlation analysis of dynamical chaos, Physica A, 325, 1, 199-212 (2003) · Zbl 1058.82526
[29] Andronov, A. A.; Khaikin, S. E., Theory of Oscillations (1949), Princeton University Press · Zbl 0032.36501
[30] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory (2013), Springer Science & Business Media
[31] Ziv, J.; Lempel, A., A universal algorithm for sequential data compression, IEEE Trans. Inform. Theory, 23, 3, 337-343 (1977) · Zbl 0379.94010
[32] Ziv, J.; Lempel, A., Compression of individual sequences via variable-rate coding, IEEE Trans. Inform. Theory, 24, 5, 530-536 (1978) · Zbl 0392.94004
[33] Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J. A., Determining Lyapunov exponents from a time series, Physica D, 16, 3, 285-317 (1985) · Zbl 0585.58037
[34] Posch, H. A.; Hoover, W. G., Lyapunov instability of dense Lennard-Jones fluids, Phys. Rev. A, 38, 1, 473 (1988)
[35] Gaspard, P.; Burghardt, I., Advances in Chemical Physics, Chemical Reactions and their Control on the Femtosecond Time Scale: 20th SolvayConference on Chemistry (2009), John Wiley & Sons
[36] Shilnikov, L., Mathematical problems of nonlinear dynamics, J. Franklin Inst., 334b, 5/6, 793-864 (1997) · Zbl 0888.58028
[37] Shilnikov, A. L.; Turaev, D. V.; Chua, L. O., Methods of Qualitative Theory in Nonlinear Dynamics (2001), World Scientific: World Scientific Singapore · Zbl 1046.34003
[38] Tripathi, S. C., Immunoproteasome deficiency is a feature of non-small cell lung cancer with a mesenchymal phenotype and is associated a poor outcome, Proc. Natl. Acad. Sci., 113, 1555-1564 (2016)
[39] Betancourt-Mar, J. A.; Nieto-Villar, J. M., Theoretical models for chronotherapy: periodic perturbations in funnel chaos type, Math. Biosci. Eng. MBE, 4, 2, 177-186 (2007) · Zbl 1123.92013
[40] Kitano, H., Cancer Robustness: Tumour Tactics, Vol. 426, 125 (2003), Nature Publishing Group
[41] Kim, S.; Lahmy, R.; Riha, C.; Yang, C.; Jakubison, B. L.; van Niekerk, J., The basic helix-loop-helix transcription factor E47 reprograms human pancreatic cancer cells to a quiescent acinar state with reduced tumorigenic potential, Pancreas, 44, 5, 718-727 (2015)
[42] Enderling, H.; Almog, N.; Hlatky, L., Systems Biology of Tumor Dormancy (2012), Springer Science & Business Media
[43] Pantel, K.; Alix-Panabiéres, C.; Riethdorf, S., Cancer micrometastasis, Nat. Rev. Clin. Oncol., 6, 6, 339-351 (2009)
[44] Luo, L., Entropy production in a cell and reversal of entropy flow as an anticancer therapy, Front. Phys. China, 4, 122-136 (2009)
[45] Lucia, U.; Grisolia, G.; Ponzetto, A.; Deisboeck, T. S., Thermodynamic considerations on the role of heat and mass transfer in biochemical causes of carcinogenesis, Physica A, 490, 1164-1170 (2018)
[46] Lucia, U.; Ponzetto, A., Some thermodynamic considerations on low frequency electromagnetic waves effects on cancer invasion and metastasis, Physica A, 467, 289-295 (2017)
[47] Lucia, U.; Grisolia, G., Second law efficiency for living cells, Front. Biosci. (Scholar Ed.), 9, 270 (2017)
[48] (Bizzarri, Mariano, Systems Biology (2018), Humana Press: Humana Press New York, NY)
[49] Nicolis, G.; Nicolis, C., Foundations of Complex Systems: Emergence, Information and Prediction (2012), World Scientific · Zbl 1260.37001
[50] Marín, D.; Sabater, B., The cancer Warburg effect may be a testable example of the minimum entropy production rate principle, Phys. Biol., 14, 2, 024001 (2017)
[51] Bizzarri, M.; Cucina, A.; Proietti, S., Tumor reversion: mesenchimal-epithelial transition as a critical step in managing the tumor microenvironment cross-talk, Curr Pharm Des. (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.