×

Downscaling shallow water simulations using artificial neural networks and boosted trees. (English) Zbl 1514.86007

Summary: We present the application of two statistical artificial intelligence tools for multi-scale shallow water simulations. Artificial neural networks (ANNs) and boosted trees (BTs) are used to model the relationship between low-resolution (LR) and high-resolution (HR) information derived from simulations provided in the learning phase. The two statistical models are analyzed (and compared) through hyper-parameters such as the number of epochs and the network structure for ANNs, and the learning rate, tree depth and number for BTs. This analysis is performed through 4 numerical experiments the input datasets of which (for the learning, validation and test phases) are varied through the boundary conditions of the flow numerical simulation.
The performance of the ANNs is remarkably consistent, regardless of the choice made for the training/validation/testing set. The performance improves with the number of epochs and the number of neurons. For a given number of neurons, a single-layer structure performs better than multi-layer structures. BTs perform significantly better than ANNs in 2 experiments, with an error 10 to 100 times lower and a computational cost 5 to 10 times larger). However, when the validation datasets differ from the training datasets, the performance of BTs performance is strongly degraded, with a modelling error more than one order of magnitude larger than that of ANNs.
Used in conjunction with upscaled flood models such as porosity models, these techniques appear as a promising operational alternative to direct flood hazard assessment from HR flow simulations.

MSC:

86A05 Hydrology, hydrography, oceanography
86A32 Geostatistics
68T07 Artificial neural networks and deep learning

Software:

HLLE; PRMLT
Full Text: DOI

References:

[1] J. L. Auriault, Heterogeneous medium. Is an equivalent macroscopic description possible?, International Journal of Engineering Science, 29, 785-795 (1991) · Zbl 0749.73003 · doi:10.1016/0020-7225(91)90001-J
[2] J. L. P. M. Auriault Adler, Taylor dispersion in porous media: analysis by multiple scale expansions, Advances in Water Resources, 18, 217-226 (1995) · doi:10.1016/0309-1708(95)00011-7
[3] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978. · Zbl 0404.35001
[4] F. M. C. J.-F. A. Bernardin Bossy Chauvin Jabir Rousseau, Stochastic Lagrangian method for downscaling problems in computational fluid dynamics, ESAIM: M2AN, 44, 885-920 (2010) · Zbl 1426.76628 · doi:10.1051/m2an/2010046
[5] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006. · Zbl 1107.68072
[6] M. P. S. M. B. Bruwier Archambeau Erpicum Pirotton Dewals, Shallow-water models with anisotropic porosity and merging for flood modelling on Cartesian grids, Journal of Hydrology, 554, 693-709 (2017) · doi:10.1016/j.jhydrol.2017.09.051
[7] J. G. Caldas Steinstraesser, V. Guinot and A. Rousseau, Modified parareal method for solving the two-dimensional nonlinear shallow water equations using finite volumes, The SMAI Journal of Computational Mathematics, 7 (2021), 159-184. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.75/. · Zbl 1518.76040
[8] A. J. P. H. Cannon Whitfield, Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models, Journal of Hydrology, 259, 136-151 (2002) · doi:10.1016/S0022-1694(01)00581-9
[9] J. V. Carreau Guinot, A PCA spatial pattern based artificial neural network downscaling model for urban flood hazard assessment, Advances in Water Resources, 147, 103821 (2021) · doi:10.1016/j.advwatres.2020.103821
[10] A. B. S. D. Chen Evans Djordjevic Savic, A coarse-grid approach to represent building blockage effects in 2d urban flood modelling, Journal of Hydrology, 426-427, 1-16 (2012)
[11] A. J.-C. de Saint-Venant, Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leur lit, Comptes Rendus de l’Académie des Sciences, 73, 147-154 (1871) · JFM 03.0482.04
[12] A. Defina, Two-dimensional shallow flow equations for partially dry areas, Water Resour. Res., 36, 3251-3264 (2000) · doi:10.1029/2000WR900167
[13] Y. B. P. Dibike Coulibaly, Temporal neural networks for downscaling climate variability and extremes, Neural Networks, 19, 135-144 (2006) · doi:10.1109/IJCNN.2005.1556124
[14] H. Ene and E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Springer, Berlin, 1980. · Zbl 0432.70002
[15] C. L. Farmer, Upscaling: A review, International Journal for Numerical Methods in Fluids, 40, 63-78 (2002) · Zbl 1058.76574 · doi:10.1002/fld.267
[16] N. Q. W. R. Fraehr Wang Wu Nathan, Upskilling low-fidelity hydrodynamic models of flood inundation through spatial analysis and Gaussian process learning, Water Resources Research, 58 (2022) · doi:10.1029/2022WR032248
[17] Y. Freund, Boosting a weak learning algorithm by majority, Information and Computation, 121 (1995), 256-285, Also appeared in COLT90. · Zbl 0833.68109
[18] Y. Freund and R. E. Schapire, Experiments with a new boosting algorithm, in Proceedings of the 13th International Conference on Machine Learning, Morgan Kaufmann, 1996,148-156.
[19] Y. Freund and R. Schapire, A short introduction to boosting, in In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, Morgan Kaufmann, 1999, 1401-1406.
[20] J. H. Friedman, Greedy function approximation: A gradient boosting machine, The Annals of Statistics, 29 (2001), 1189-1232. http://www.jstor.org/stable/2699986. · Zbl 1043.62034
[21] J. T. R. Friedman Hastie Tibshirani, Additive logistic regression: A statistical view of boosting, Annals of Statistics, 28, 2000 (1998)
[22] J.-F. B. Gerbeau Perthame, Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation, Discrete and Continuous Dynamical Systems-Series B., 1, 89-102 (2001) · Zbl 0997.76023 · doi:10.3934/dcdsb.2001.1.89
[23] S. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb., 47, 271-306 (1959) · Zbl 0171.46204
[24] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, Cambridge, MA, USA, 2016. http://www.deeplearningbook.org. · Zbl 1373.68009
[25] V. Guinot, Multiple porosity shallow water models for macroscopic modelling of urban floods, Advances in Water Resources, 37, 40-72 (2012) · doi:10.1016/j.advwatres.2011.11.002
[26] V. Guinot, C. Delenne and S. Soares-Frazão, Urban dambreak experiments - riverflow paper, in RiverFlow 2018 Ibternational Conference, 2018.
[27] V. B. F. J. E. Guinot Sanders Schubert, Dual integral porosity shallow water model for urban flood modelling, Advances in Water Resources, 103, 16-31 (2017) · doi:10.1016/j.advwatres.2017.02.009
[28] V. S. Guinot Soares-Frazão, Flux and source term discretization in two-dimensional shallow water models with porosity on unstructured grids, International Journal for Numerical Methods in Fluids, 50, 309-345 (2006) · Zbl 1086.76048 · doi:10.1002/fld.1059
[29] A. P. D. B. Harten Lax van Leer, On upstream differencing and godunov-type schemes for hyperbolic conservation laws, SIAM Review, 25, 35-61 (1983) · Zbl 0565.65051 · doi:10.1137/1025002
[30] J. Hervouet, R. Samie and B. Moreau, Modelling urban areas in dam-break floodwave numerical simulations, in Proceedings of the International Seminar and Workshop on Rescue Actions based on Dambreak Flow Analysis, Seinâjoki, Finland, 1-6 October 2000, 2000.
[31] P. G. Indelman Dagan, Upscaling of permeability of anisotropic heterogeneous formations. 1. The general framework, Water Resources Research, 29, 917-923 (1993) · doi:10.1029/92WR02446
[32] B. B. F. J. S. V. Kim Sanders Famiglietti Guinot, Urban flood modeling with porous shallow-water equations: A case study of model errors in the presence of anisotropic porosity, Journal of Hydrology, 523, 680-692 (2015) · doi:10.1016/j.jhydrol.2015.01.059
[33] P. D. Lax, Hyperbolic systems of conservation laws Ⅱ, Communications on Pure and Applied Mathematics, 10, 537-566 (1957) · Zbl 0081.08803 · doi:10.1002/cpa.3160100406
[34] Y. Y. G. LeCun Bengio Hinton, Deep learning, Nature Cell Biology, 521, 436-444 (2015) · doi:10.1038/nature14539
[35] A. B. F. K. A. D. L. D. A. K. A. J. E. A. V. R. A. Luke Sanders Goodrich Feldman Boudreau Eguiarte Serrano Reyes Schubert AghaKouchak Basolo Matthew, Going beyond the flood insurance rate map: Insights from flood hazard map co-production, Natural Hazards and Earth System Sciences, 18, 1097-1120 (2018) · doi:10.5194/nhess-18-1097-2018
[36] I. J. D. R. Özgen Zhao Liang Hinkelmann, Urban flood modeling using shallow water eqations with depth-dependent anisotropic porosity, Journal of Hydrology, 541, 1165-1184 (2016)
[37] P. G. D. Renard Marsily, Calculating equivalent permeability: A review, Advances in Water Resources, 20, 253-278 (1997) · doi:10.1016/S0309-1708(96)00050-4
[38] M. V. T. P. P. Salameh Drobinski Naveau, Statistical downscaling of near surface wind field over complex terrain in southern france, Meteorology and Atmospheric Physics, 103, 253-265 (2009)
[39] B. F. J. E. Sanders Schubert, PRIMo: Parallel raster inundation model, Advances in Water Resources, 126, 79-95 (2019) · doi:10.1016/j.advwatres.2019.02.007
[40] B. J. H. Sanders Schubert Gallegos, Integral formulation of shallow water models with anisotropic porosity for urban flood modelling, Journal of Hydrology, 362, 19-38 (2008)
[41] J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks, 61, 85-117 (2015) · doi:10.1016/j.neunet.2014.09.003
[42] J. E. B. F. Schubert Sanders, Building treatments for urban flood inundation models and implications for predictive skill and modeling efficiency, Advances in Water Resources, 41, 49-64 (2012) · doi:10.1016/j.advwatres.2012.02.012
[43] D. P. Viero, Modelling urban floods using a finite element staggered scheme with an anisotropic dual porosity model, Journal of Hydrology, 568, 247-259 (2019) · doi:10.1016/j.jhydrol.2018.10.055
[44] D. P. M. Viero Valipour, Modeling anisotropy in free-surface overland and shallow inundation flows, Advances in Water Resources, 104, 1-14 (2017) · doi:10.1016/j.advwatres.2017.03.007
[45] M. P. V. Vrac Ayar, Influence of bias correcting predictors on statistical downscaling models, Journal of Applied Meteorology and Climatology, 56, 5-26 (2016) · doi:10.1175/JAMC-D-16-0079.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.