×

Anharmonic quantum mechanical systems do not feature phase space trajectories. (English) Zbl 1514.82119

Summary: Phase space dynamics in classical mechanics is described by transport along trajectories. Anharmonic quantum mechanical systems do not allow for a trajectory-based description of their phase space dynamics. This invalidates some approaches to quantum phase space studies. We first demonstrate the absence of trajectories in general terms. We then give an explicit proof for all quantum phase space distributions with negative values: we show that the generation of coherences in anharmonic quantum mechanical systems is responsible for the occurrence of singularities in their phase space velocity fields, and vice versa. This explains numerical problems repeatedly reported in the literature, and provides deeper insight into the nature of quantum phase space dynamics.

MSC:

82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)
70K05 Phase plane analysis, limit cycles for nonlinear problems in mechanics
81Q80 Special quantum systems, such as solvable systems

Software:

QuTiP

References:

[1] Lee, H.; Scully, M. O., Wigner phasespace description of a Morse oscillator, J. Chem. Phys., 77, 9, 4604-4610 (1982)
[2] Carruthers, P.; Zachariasen, F., Quantum collision theory with phase-space distributions, Rev. Modern Phys., 55, 245-285 (1983)
[3] Lee, H.-W.; Scully, M. O., The Wigner phase-space description of collision processes, Found. Phys., 13, 61-72 (1983)
[4] Henriksen, N. E.; Billing, G. D.; Hansen, F. Y., Phase space representation of quantum mechanics: Approximate dynamics of the morse oscillator, Chem. Phys. Lett., 149, 397-403 (1988)
[5] Lee, H.-W., Quantum potential in the Wigner phase space, Phys. Lett. A, 146, 287-292 (1990)
[6] Sala, R.; Brouard, S.; Muga, J. G., Wigner trajectories and Liouvilles theorem, J. Chem. Phys., 99, 4, 2708-2714 (1993)
[7] Muga, J.; Sala, R.; Brouard, S., Wigner function for the square barrier, Solid State Commun., 94, 10, 877-882 (1995)
[8] Lee, H., Theory and application of the quantum phase-space distribution functions, Phys. Rep., 259, 147-211 (1995)
[9] Razavy, M., Wigner trajectories in quantum tunneling, Phys. Lett. A, 212, 119-122 (1996) · Zbl 1073.81625
[10] Dias, N. C.; Prata, J. N., Wigner functions with boundaries, J. Math. Phys., 43, 10, 4602-4627 (2002) · Zbl 1060.81045
[11] Razavy, M., Quantum Theory of Tunneling (2003), World Scientific: World Scientific Toh Tuck Link, Singapore · Zbl 1140.81306
[12] Daligault, J., Non-Hamiltonian dynamics and trajectory methods in quantum phase spaces, Phys. Rev. A, 68, 1, 010501 (2003)
[13] Trahan, C. J.; Wyatt, R. E., Evolution of classical and quantum phase-space distributions: A new trajectory approach for phase space hydrodynamics, J. Chem. Phys., 119, 7017-7029 (2003)
[14] Zhang, X.-F.; Zheng, Y.-J., Evolution of quantum phase space distribution: A trajectory-density approach, Chin. Phys. Lett., 26, 2, 023404 (2009)
[15] Brosens, F.; Magnus, W., Newtonian trajectories: A powerful tool for solving quantum dynamics, Solid State Commun., 150, 2102-2105 (2010)
[16] Sels, D.; Brosens, F.; Magnus, W., Classical trajectories: A powerful tool for solving tunneling problems, Phys. A: Stat. Mech. Appl., 391, 1-2, 78-81 (2012)
[17] Wong, C.-Y., Dynamics of nuclear fluid. VIII. Time-dependent Hartree-Fock approximation from a classical point of view, Phys. Rev. C, 25, 3, 1460-1475 (1982)
[18] Lee, H.-W.; George, T. F., Wigner phase-space description above and below the classical threshold for the H + H2 reaction, J. Chem. Phys., 84, 6247-6249 (1986)
[19] Skodje, R. T.; Rohrs, H. W.; VanBuskirk, J., Flux analysis, the correspondence principle, and the structure of quantum phase space, Phys. Rev. A, 40, 2894-2916 (1989)
[20] Wong, C.-Y., Explicit solution of the time evolution of the Wigner function, J. Opt. B: Quant. Semiclass. Opt., 5, 3, S420-S428 (2003)
[21] Landauer, R.; Martin, T., Barrier interaction time in tunneling, Rev. Modern Phys., 66, 217-228 (1994)
[22] Krivoruchenko, M. I.; Martemyanov, B. V.; Fuchs, C., Comment on “Dynamics of nuclear fluid. VIII. Time-dependent Hartree-Fock approximation from a classical point of view”, Phys. Rev. C, 76, 059801 (2007)
[23] Dittrich, T.; Gómez, E. A.; Pachón, L. A., Semiclassical propagation of Wigner functions, J. Chem. Phys., 132, 21 (2010), 214102-214102
[24] Sels, D.; Brosens, F.; Magnus, W., Wigner distribution functions for complex dynamical systems: A path integral approach, Phys. A: Stat. Mech. Appl., 392, 2, 326-335 (2013)
[25] Private Communications with fellow scientists, and Reviewer’s Reports.
[26] Schleich, W. P., Quantum Optics in Phase Space (2001), Wiley-VCH: Wiley-VCH New York · Zbl 0961.81136
[27] Zachos, C. K.; Fairlie, D. B.; Curtright, T. L., Quantum Mechanics in Phase Space: an Overview with Selected Papers (2005), World Scientific: World Scientific Singapore, New Jersey · Zbl 1098.81008
[28] Hirshfeld, A. C.; Henselder, P., Deformation quantization in the teaching of quantum mechanics, Amer. J. Phys., 70, 537-547 (2002), arXiv:quant-ph/0208163 · Zbl 1219.81170
[29] Miller, W. H., Perspective: Quantum or classical coherence?, J. Chem. Phys., 136, 21 (2012)
[30] Habershon, S.; Manolopoulos, D. E.; Markland, T. E.; Miller, T. F., Ring-polymer molecular dynamics: Quantum effects in chemical dynamics from classical trajectories in an extended phase space, Annu. Rev. Phys. Chem., 64, 387-413 (2013)
[31] Koda, S.-I., Initial-value semiclassical propagators for the Wigner phase space representation: Formulation based on the interpretation of the Moyal equation as a Schrödinger equation, J. Chem. Phys., 143, 24, 244110 (2015)
[32] Moller, K. B.; Dahl, J. P.; Henriksen, N. E., Wigner method dynamics in the interaction picture, J. Phys. Chem., 98, 13, 3272-3279 (1994)
[33] Donoso, A.; Martens, C. C., Quantum tunneling using entangled classical trajectories, Phys. Rev. Lett., 87, 22, 223202 (2001)
[34] Nolte, D. D., The tangled tale of phase space, Phys. Today, 63, 4, 33-38 (2010)
[35] Kosloff, R., Time-dependent quantum-mechanical methods for molecular dynamics, J. Chem. Phys., 92, 8, 2087-2100 (1988)
[36] Cabrera, R.; Bondar, D. I.; Jacobs, K.; Rabitz, H. A., Efficient method to generate time evolution of the Wigner function for open quantum systems, Phys. Rev. A, 92, 042122 (2015), arXiv:1212.3406
[37] Wigner, E., On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40, 749-759 (1932) · JFM 58.0948.07
[38] Hillery, M.; O’Connell, R. F.; Scully, M. O.; Wigner, E. P., Distribution functions in physics: Fundamentals, Phys. Rep., 106, 3, 121-167 (1984)
[39] Case, W. B., Wigner functions and Weyl transforms for pedestrians, Amer. J. Phys., 76, 10, 937-946 (2008)
[40] Hudson, R. L., When is the wigner quasi-probability density non-negative?, Rep. Math. Phys., 6, 2, 249-252 (1974) · Zbl 0324.60018
[41] Royer, A., Ehrenfest’s theorem reinterpreted and extended with Wigner’s function, Found. Phys., 22, 727-736 (1992)
[42] Ballentine, L. E.; Yang, Y.; Zibin, J. P., Inadequacy of Ehrenfests theorem to characterize the classical regime, Phys. Rev. A, 50, 4, 2854-2859 (1994)
[43] Zurek, W. H., Sub-Planck structure in phase space and its relevance for quantum decoherence, Nature, 412, 712-717 (2001), arXiv:quant-ph/0201118
[44] Heisenberg, W., Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z. Phys., 43, 172-198 (1927), https://link.springer.com/article/10.1007 · JFM 53.0853.05
[45] Takabayasi, T., The formulation of quantum mechanics in terms of ensemble in phase space, Progr. Theoret. Phys., 11, 341-373 (1954) · Zbl 0058.22902
[46] Lopreore, C. L.; Wyatt, R. E., Quantum wave packet dynamics with trajectories, Phys. Rev. Lett., 82, 5190-5193 (1999)
[47] Hiley, B., Phase space descriptions of quantum phenomena, (Proc. Int. Conf. Quantum Theory: Reconsideration of Foundations, Vol. 2 (2004)), 267-286, https://www.researchgate.net/profile/B_Hiley/publication/228852378_Phase_space_descriptions_of_quantum_phenomena/links/0deec52c7473da9739000000.pdf
[48] Kocsis, S.; Braverman, B.; Ravets, S.; Stevens, M. J.; Mirin, R. P.; Shalm, L. K.; Steinberg, A. M., Observing the average trajectories of single photons in a two-slit interferometer, Science, 332, 6034, 1170-1173 (2011) · Zbl 1355.81025
[49] Heller, E. J., Wigner phase space method: Analysis for semiclassical applications, J. Chem. Phys., 65, 4, 1289-1298 (1976)
[50] Tomsovic, S.; Heller, E. J., Semiclassical dynamics of chaotic motion: Unexpected long-time accuracy, Phys. Rev. Lett., 67, 664-667 (1991) · Zbl 0990.81511
[51] Berry, M. V.; Balazs, N. L., Evolution of semiclassical quantum states in phase space, J. Phys. A, 12, 5, 625 (1979) · Zbl 0396.70018
[52] Kakofengitis, D.; Oliva, M.; Steuernagel, O., Wigner’s representation of quantum mechanics in integral form and its applications, Phys. Rev. A, 95, 022127 (2017), arXiv:1611.06891
[53] Baker, G. A., Formulation of quantum mechanics based on the quasi-probability distribution induced on phase space, Phys. Rev., 109, 2198-2206 (1958)
[54] Moyal, J. E., Quantum mechanics as a statistical theory, Proc. Camb. Phil. Soc., 45, 99 (1949) · Zbl 0031.33601
[55] Steuernagel, O.; Kakofengitis, D.; Ritter, G., Wigner flow reveals topological order in quantum phase space dynamics, Phys. Rev. Lett., 110, 030401 (2013), arXiv:1208.2970
[56] Kakofengitis, D.; Steuernagel, O., Wigner’s quantum phase space flow in weakly-anharmonic weakly-excited two-state systems, Eur. Phys. J. Plus, 132, 9, 381 (2017), arXiv:1411.3511
[57] Feynman, R. P., Negative Probability, (Hiley, B. J.; Peat, F. D., Quantum implications: essays in honour of David Bohm (1987), Routledge: Routledge London, UK), 235-248, http://cds.cern.ch/record/154856/files/pre-27827.pdf
[58] Leibfried, D.; Pfau, T.; Monroe, C., Shadows and mirrors: Reconstructing quantum states of atom motion, Phys. Today, 51, 22-29 (1998)
[59] Grangier, P., Make it quantum and continuous, Science, 332, 6027, 313-314 (2011)
[60] Steuernagel, O., Equivalence between free quantum particles and those in harmonic potentials and its application to instantaneous changes, Eur. Phys. J. Plus, 129, 114 (2014), arXiv:1405.0445
[61] We cannot comment on statement (i), being unable to confirm it.
[62] Takahashi, K., Wigner and Husimi Functions in Quantum Mechanics, J. Phys. Soc. Japan, 55, 762 (1986)
[63] Veronez, M.; de Aguiar, M. A.M., Phase space flow in the husimi representation, J. Phys. A, 46, 48, 485304 (2013) · Zbl 1280.81086
[64] Johansson, J. R.; Nation, P. D.; Nori, F., QuTiP 2: A Python framework for the dynamics of open quantum systems, Comput. Phys. Comm., 184, 1234-1240 (2013), arXiv:1211.6518
[65] Peder Dahl, J.; Springborg, M., The Morse oscillator in position space, momentum space, and phase space, J. Chem. Phys., 88, 4535-4547 (1988)
[66] Huaqing, L.; Poulsen, J.; Nyman, G., Tunneling dynamics using classical-like trajectories with an effective quantum force, J. Phys. Chem. Lett., 4, 17, 3013-3018 (2013)
[67] Donoso, A.; Zheng, Y.; Martens, C. C., Simulation of quantum processes using entangled trajectory molecular dynamics, J. Chem. Phys., 119, 10, 5010-5020 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.