×

Thermodynamics of quantum phase transitions of a Dirac oscillator in a homogenous magnetic field. (English) Zbl 1514.82114

Summary: The Dirac oscillator in a homogeneous magnetic field exhibits a chirality phase transition at a particular (critical) value of the magnetic field. Recently, this system has also been shown to be exactly solvable in the context of noncommutative quantum mechanics featuring the interesting phenomenon of re-entrant phase transitions. In this work we provide a detailed study of the thermodynamics of such quantum phase transitions (both in the standard and in the noncommutative case) within the Maxwell-Boltzmann statistics pointing out that the magnetization has discontinuities at critical values of the magnetic field even at finite temperatures.

MSC:

82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)
82B10 Quantum equilibrium statistical mechanics (general)
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
82B26 Phase transitions (general) in equilibrium statistical mechanics

Software:

DLMF

References:

[1] Sachdev S 2011 Quantum Phase Transitions 2nd edn (Cambridge: Cambridge University Press) · Zbl 1233.82003 · doi:10.1017/CBO9780511973765
[2] Moshinsky M and Szczepaniak A 1989 The Dirac oscillator J. Phys. A: Math. Gen.22 L817 · doi:10.1088/0305-4470/22/17/002
[3] Bermudez A, Martin-Delgado M A and Solano E 2007 Exact mapping of the 2+1 Dirac oscillator onto the Jaynes-Cummings model: ion-trap experimental proposal Phys. Rev. A 76 041801 · doi:10.1103/physreva.76.041801
[4] Mandal B P and Rai S K 2012 Noncommutative Dirac oscillator in an external magnetic field Phys. Lett. A 376 2467-70 · Zbl 1266.35127 · doi:10.1016/j.physleta.2012.07.001
[5] Luo Z-Y, Wang Q, Xiao L and Jing J 2012 Dirac oscillator in noncommutative phase space and (anti)-Jaynes-Cummings models Int. J. Theor. Phys.51 2143-51 · Zbl 1262.81083 · doi:10.1007/s10773-012-1094-x
[6] Hou Y-L, Wang Q, Long Z-W and Jing J 2015 Noncommutative 2+1 dimensional dirac oscillator and quantum phase transition Ann. Phys.354 10-20 · Zbl 1377.81074 · doi:10.1016/j.aop.2014.12.002
[7] Franco-Villafañe J-A, Sadurni E, Barkhofen S, Kuhl U, Mortessagne F and Seligman T H 2013 First experimental realization of the Dirac oscillator Phys. Rev. Lett.111 170405 · doi:10.1103/physrevlett.111.170405
[8] Sadurni E, Seligman T H and Mortessagne F 2010 Playing relativistic billiards beyond graphene New J. Phys.12 053014 · doi:10.1088/1367-2630/12/5/053014
[9] Bermudez A, Martin-Delgado M A and Solano E 2007 Mesoscopic superposition states in relativistic landau levels Phys. Rev. Lett.99 123602 · doi:10.1103/physrevlett.99.123602
[10] Bermudez A, Martin-Delgado M A and Luis A 2008 Nonrelativistic limit in the 2 + 1 Dirac oscillator: a Ramsey-interferometry effect Phys. Rev. A 77 033832 · doi:10.1103/physreva.77.033832
[11] Mandal B P and Verma S 2010 Dirac oscillators in presence of external magnetic field Phys. Lett. A 374 1021-3 · Zbl 1236.81223 · doi:10.1016/j.physleta.2009.12.048
[12] Bermudez A, Martin-Delgado M A and Luis A 2008 Chirality quantum phase transition in the Dirac oscillator Phys. Rev. A 77 063815 · doi:10.1103/physreva.77.063815
[13] Quimbay C and Strange P 2013 Quantum phase transition in the chirality of the (2+1)-dimensional Dirac oscillator (arXiv:1312.5251 [quant-ph])
[14] Panella O and Roy P 2014 Quantum phase transitions in the noncommutative Dirac Oscillator Phys. Rev. A 90 042111 · doi:10.1103/physreva.90.042111
[15] Panella O and Roy P 2016 Re-entrant phase transitions in non-commutative quantum mechanics J. Phys.: Conf. Ser.670 012040 · doi:10.1088/1742-6596/670/1/012040
[16] Hudson C S 1904 Die gegenseitige löslichkeit von nikotin in wasser Zeitschrift für Physikalische Chemie47 113-5 · doi:10.1515/zpch-1904-4708
[17] Mann R B 2016 The chemistry of black holes 1st Karl Schwarzschild Meeting on Gravitational Physics ed P Nicolini, M Kaminski, J Mureika and M Bleicher (Cham: Springer) pp 197-205 · doi:10.1007/978-3-319-20046-0_23
[18] Altamirano N, Kubiznak D and Mann R B 2013 Reentrant phase transitions in rotating anti-de Sitter black holes Phys. Rev. D 88 101502 · doi:10.1103/physrevd.88.101502
[19] Frassino A M, Kubiznak D, Mann R B and Simovic F 2014 Multiple reentrant phase transitions and triple points in Lovelock thermodynamics J. High Energy Phys. JHEP09(2014)080 · Zbl 1333.83142 · doi:10.1007/JHEP09(2014)080
[20] Neupert T, Santos L, Ryu S, Chamon C and Mudry C 2012 Noncommutative geometry for three-dimensional topological insulators Phys. Rev. B 86 035125 · doi:10.1103/physrevb.86.035125
[21] Haldane F D M 2011 Geometrical description of the fractional quantum hall effect Phys. Rev. Lett.107 116801 · doi:10.1103/physrevlett.107.116801
[22] Parameswaran S A, Roy R and Sondhi S L 2012 Fractional Chern insulators and the W ∞ algebra Phys. Rev. B 85 241308 · doi:10.1103/physrevb.85.241308
[23] Bernevig B A and Regnault N 2012 Emergent many-body translational symmetries of Abelian and non-Abelian fractionally filled topological insulators Phys. Rev. B 85 075128 · doi:10.1103/physrevb.85.075128
[24] Kubo R, Ichimura H, Usui T and Hashitsume N 1990 Statistical Mechanics(North-Holland Personal Library) 1st edn (Amsterdam: North-Holland)
[25] Banerjee R and Ghosh S 1998 The Chiral oscillator and its applications in quantum theory J. Phys. A 31 L603-8 · Zbl 0951.81507 · doi:10.1088/0305-4470/31/36/002
[26] Horta Barreira M M and Wotzasek C 1992 Chiral boson quantum mechanics Phys. Rev. D 45 1410-5 · doi:10.1103/physrevd.45.1410
[27] Dunne G V, Jackiw R and Trugenberger C A 1990 Topological (Chern-Simons) quantum mechanics Phys. Rev. D 41 661 · doi:10.1103/physrevd.41.661
[28] Hakim R 2011 Introduction to Relativistic Statistical Mechanics: Classical and Quantum (Singapore: World Scientific) · Zbl 1243.82001 · doi:10.1142/7881
[29] Brevik I H, Herikstad R and Skriudalen S 2007 Entropy bound for the TM electromagnetic field in the half Einstein universe Int. J. Mod. Phys. D 16 1273-84 · Zbl 1200.83129 · doi:10.1142/s021827180701078x
[30] Dariescu M-A and Dariescu C 2007 Finite temperature analysis of quantum Hall-type behavior of charged bosons Chaos, Solitons Fractals33 776-81 · Zbl 1132.81355 · doi:10.1016/j.chaos.2006.03.021
[31] Boumali A 2015 The one-dimensional thermal properties for the relativistic harmonic oscillators EJTP12 121-30 (http://www.ejtp.com/articles/ejtpv12i32p121.pdf)
[32] Paris R B and Kaminski D 2001 Asymptotics and Mellin-Barnes Integrals(Encyclopedia of Mathematics and its Applications) 1st edn (Cambridge: Cambridge University Press) · Zbl 0983.41019 · doi:10.1017/CBO9780511546662
[33] Paris R B 2005 The Stokes phenomenon associated with the Hurwitz zeta function ζ(s, a) Proc. R. Soc. A 461 297-304 · Zbl 1145.11326 · doi:10.1098/rspa.2004.1395
[34] Magnus W, Oberhettinger F and Soni R 2013 Formulas and Theorems for the Special Functions of Mathematical Physics(Grundlehren der mathematischen Wissenschaften) (Berlin: Springer)
[35] Yoshioka D and Fukuyama H 1992 Orbital magnetism of two-dimensional electrons in confining potentials J. Phys. Soc. Japan61 2368-81 · doi:10.1143/jpsj.61.2368
[36] Andersen J O and Haugset T 1995 Magnetization in (2+1)-dimensional QED at finite temperature and density Phys. Rev. D 51 3073-80 · doi:10.1103/physrevd.51.3073
[37] NIST 2017 Digital Library of Mathematical Functions (Version 1.0.15) http://dlmf.nist.gov/ · Zbl 1019.65001
[38] Grosse H and Wulkenhaar R 2012 8D-spectral triple on 4D-Moyal space and the vacuum of noncommutative gauge theory J. Geom. Phys.62 1583-99 · Zbl 1243.58005 · doi:10.1016/j.geomphys.2012.03.005
[39] Grosse H and Wulkenhaar R 2014 Self-dual noncommutative ϕ 4 -theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory Commun. Math. Phys.329 1069-130 · Zbl 1305.81129 · doi:10.1007/s00220-014-1906-3
[40] Grosse H, Alexander H and Wulkenhaar R 2020 Solution of the self-dual Φ4 QFT-model on four-dimensional Moyal space J. High Energy Phys. JHEP01(2020)081 · Zbl 1434.81046 · doi:10.1007/JHEP01(2020)081
[41] Vitale P and Wallet J-C 2013 Noncommutative field theories on R λ 3 : toward UV/IR mixing freedom J. High Energy Phys. JHEP04(2013)115 · Zbl 1342.81641 · doi:10.1007/jhep04(2013)115
[42] Vitale P and Wallet J-C 2015 Addendum: Noncommutative field theories on R λ 3 : toward UV/IR mixing freedom J. High Energy Phys. JHEP03(2015)115 · Zbl 1388.81905 · doi:10.1007/jhep03(2015)115
[43] Martinetti P, Vitale P and Wallet J-C 2013 Noncommutative gauge theories on R θ 2 as matrix models J. High Energy Phys. JHEP09(2013)051 · Zbl 1342.81309 · doi:10.1007/jhep09(2013)051
[44] Antoine G, Vitale P and Wallet J-C 2014 Quantum gauge theories on noncommutative three-dimensional space Phys. Rev. D 90 045019 · doi:10.1103/physrevd.90.045019
[45] Amelino-Camelia G and Arzano M 2002 Coproduct and star product in field theories on Lie algebra noncommutative space-times Phys. Rev. D 65 084044 · doi:10.1103/physrevd.65.084044
[46] Agostini A, Amelino-Camelia G and Arzano M 2004 Dirac spinors for doubly special relativity and kappa Minkowski noncommutative space-time Class. Quantum Grav.21 2179-202 · Zbl 1051.83003 · doi:10.1088/0264-9381/21/8/018
[47] Agostini A, Amelino-Camelia G, Arzano M and D’Andrea F 2006 A cyclic integral on kappa-Minkowski noncommutative space-time Int. J. Mod. Phys. A 21 3133-50 · Zbl 1101.83021 · doi:10.1142/s0217751x06031077
[48] Agostini A, Amelino-Camelia G, Arzano M, Marciano A and Tacchi R A 2007 Generalizing the noether theorem for Hopf-algebra spacetime symmetries Mod. Phys. Lett. A 22 1779-86 · Zbl 1143.83317 · doi:10.1142/s0217732307024280
[49] Bertolami O, Rosa J G, de Aragao C M L, Castorina P and Zappala D 2005 Noncommutative gravitational quantum well Phys. Rev. D 72 025010 · doi:10.1103/physrevd.72.025010
[50] Gamboa J, Loewe M, Mendez F and Rojas J C 2002 Noncommutative quantum mechanics: the two-dimensional central field Int. J. Mod. Phys. A 17 2555-66 · Zbl 1046.81056 · doi:10.1142/s0217751x02010960
[51] Itô D, Mori K and Carriere E 1967 An example of dynamical systems with linear trajectory Il Nuovo Cimento A 51 1119-21 · doi:10.1007/bf02721775
[52] Bellucci S, Nersessian A and Sochichiu C 2001 Two phases of the noncommutative quantum mechanics Phys. Lett. B 522 345-9 · Zbl 0977.81048 · doi:10.1016/s0370-2693(01)01304-1
[53] Duval C and Horvathy P A 2000 The Peierls substitution and the exotic Galilei group Phys. Lett. B 479 284-90 · Zbl 1050.81568 · doi:10.1016/s0370-2693(00)00341-5
[54] Gamboa J, Loewe M, Mendez F and Rojas J C 2001 The Landau problem and noncommutative quantum mechanics Mod. Phys. Lett. A 16 2075-8 · Zbl 1138.81384 · doi:10.1142/s0217732301005345
[55] Gamboa J, Loewe M and Rojas J C 2001 Noncommutative quantum mechanics Phys. Rev. D 64 067901 · Zbl 1138.81384 · doi:10.1103/physrevd.64.067901
[56] Horvathy P A, Martina L and Stichel P C 2010 Exotic galilean symmetry and non-commutative mechanics Symmetry, Integrability Geometry Methods Appl.6 060 · Zbl 1223.81161 · doi:10.3842/sigma.2010.060
[57] Nair V P and Polychronakos A P 2001 Quantum mechanics on the noncommutative plane and sphere Phys. Lett. B 505 267-74 · Zbl 0977.81046 · doi:10.1016/s0370-2693(01)00339-2
[58] Smailagic A and Spallucci E 2002 Isotropic representation of the noncommutative 2D harmonic oscillator Phys. Rev. D 65 107701 · doi:10.1103/physrevd.65.107701
[59] Smailagic A and Spallucci E 2002 Noncommutative 3-D harmonic oscillator J. Phys. A: Math. Gen.35 L363-8 · Zbl 1066.81576 · doi:10.1088/0305-4470/35/26/103
[60] Boumali A and Hassan H 2013 The thermal properties of a two-dimensional dirac oscillator under an external magnetic field Eur. Phys. J. Plus128 124 · doi:10.1140/epjp/i2013-13124-y
[61] Barcelo C, Liberati S and Visser M 2005 Analogue gravity Living Rev. Relativ.8 12 · Zbl 1255.83014 · doi:10.12942/lrr-2005-12
[62] Barcelo C, Liberati S and Visser M 2011 Analogue gravity Living Rev. Relativ.14 3 · Zbl 1316.83022 · doi:10.12942/lrr-2011-3
[63] Weinfurtner S, Tedford E W, Penrice M C J, Unruh W G and Lawrence G A 2011 Measurement of stimulated Hawking emission in an analogue system Phys. Rev. Lett.106 021302 · doi:10.1103/physrevlett.106.021302
[64] Belgiorno F, Cacciatori S L, Clerici M, Gorini V, Ortenzi G, Rizzi L, Rubino E, Sala V G and Faccio D 2010 Hawking radiation from ultrashort laser pulse filaments Phys. Rev. Lett.105 203901 · doi:10.1103/physrevlett.105.203901
[65] Steinhauer J 2014 Observation of self-amplifying Hawking radiation in an analog black hole laser Nat. Phys.10 864 · doi:10.1038/nphys3104
[66] Steinhauer J 2016 Observation of thermal Hawking radiation and its entanglement in an analogue black hole Nat. Phys.12 959 · doi:10.1038/nphys3863
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.