×

Conformal hypergeometry and integrability. (English) Zbl 1514.81232

Koelink, Erik (ed.) et al., Hypergeometry, integrability and Lie theory. Virtual conference, Lorentz Center, Leiden, the Netherlands, December 7–11, 2020. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 780, 263-285 (2022).
Summary: Conformal field theories play a central role in modern theoretical physics with many applications to the understanding of phase transitions, gauge theories and even the quantum physics of gravity, through Maldacena’s celebrated holographic duality. The key analytic tool in the field is the so-called conformal partial wave expansion, i.e. a Fourier-like decomposition of physical quantities into a basis of partial waves for the conformal group \(\mathrm{SO}(1,d+1)\). While the general theory of these partial waves remains largely unexplored, the very simplest specimens are known to be (close relatives of) multivariate \(BC_2\)-symmetric Heckman-Opdam hypergeometric functions. Further advances in the theory of conformal partial waves are expected to exploit a deep relation with (super-)integrability and in particular with certain limits of Gaudin integrable models.
For the entire collection see [Zbl 1496.17001].

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83C45 Quantization of the gravitational field
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
33C80 Connections of hypergeometric functions with groups and algebras, and related topics
81R12 Groups and algebras in quantum theory and relations with integrable systems

References:

[1] Luis F. Alday, Agnese Bissi, and Tomasz Lukowski, Large spin systematics in CFT, JHEP 11 (2015), 101. · Zbl 1388.81752
[2] Alday, Luis F., Conformal bootstrap with slightly broken higher spin symmetry, J. High Energy Phys., 091, front matter+33 pp. (2016) · Zbl 1388.81753 · doi:10.1007/JHEP06(2016)091
[3] Belavin, A. A., Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B, 333-380 (1984) · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[4] Bercini, Carlos, Light-cone bootstrap of higher point functions and Wilson loop duality, Phys. Rev. Lett., Paper No. 121603, 7 pp. (2021) · doi:10.1103/physrevlett.126.121603
[5] Buri\'{c}, Ilija, Gaudin models and multipoint cnformal blocks: general theory, J. High Energy Phys., Paper No. 139, 46 pp. (2021) · Zbl 1476.81108 · doi:10.1007/jhep10(2021)139
[6] Buri\'{c}, Ilija, From Gaudin integrable models to \(d\)-dimensional multipoint conformal blocks, Phys. Rev. Lett., Paper No. 021602, 7 pp. (2021) · Zbl 1466.81090 · doi:10.1103/physrevlett.126.021602
[7] Ilija Bur\'ic, Sylvain Lacroix, Jeremy A. Mann, Lorenzo Quintavalle, and Volker Schomerus, Gaudin Models and Multipoint Conformal Blocks II: Comb channel vertices in 3D and 4D, (2021). · Zbl 1476.81108
[8] Buri\'{c}, Ilija, Conformal group theory of tensor structures, J. High Energy Phys., 004, 38 pp. (2020) · Zbl 1456.81356 · doi:10.1007/jhep10(2020)004
[9] Buri\'{c}, Ilija, Superconformal blocks: general theory, J. High Energy Phys., 159, 40 pp. (2020) · Zbl 1434.81123 · doi:10.1007/jhep01(2020)159
[10] Buri\'{c}, Ilija, The superconformal Xing equation, J. High Energy Phys., 147, 43 pp. (2020) · doi:10.1007/jhep10(2020)147
[11] Calogero, F., Solution of the one-dimensional \(N\)-body problems with quadratic and/or inversely quadratic pair potentials, J. Mathematical Phys., 419-436 (1971) · Zbl 1002.70558 · doi:10.1063/1.1665604
[12] Castedo Echeverri, Alejandro, Seed conformal blocks in 4D CFT, J. High Energy Phys., 183, front matter+34 pp. (2016) · Zbl 1388.81745 · doi:10.1007/jhep02(2016)183
[13] Chervov, Alexander, Limits of Gaudin algebras, quantization of bending flows, Jucys-Murphy elements and Gelfand-Tsetlin bases, Lett. Math. Phys., 129-150 (2010) · Zbl 1275.17026 · doi:10.1007/s11005-010-0371-y
[14] Chervov, Alexander, Limits of Gaudin systems: classical and quantum cases, SIGMA Symmetry Integrability Geom. Methods Appl., Paper 029, 17 pp. (2009) · Zbl 1160.82316 · doi:10.3842/SIGMA.2009.029
[15] V. K. Dobrev, G. Mack, V. B. Petkova, S. G. Petrova, and I. T. Todorov, Harmonic Analysis on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory, Lect. Notes Phys. 63 (1977), 1-280. · Zbl 0407.43010
[16] Dolan, F. A., Conformal partial waves and the operator product expansion, Nuclear Phys. B, 491-507 (2004) · Zbl 1097.81735 · doi:10.1016/j.nuclphysb.2003.11.016
[17] F. A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, (2011).
[18] Sheer El-Showk, Miguel F. Paulos, David Poland, Slava Rychkov, David Simmons-Duffin, et al., Solving the 3D Ising Model with the Conformal Bootstrap, Phys.Rev. D86 (2012), 025022. · Zbl 1310.82013
[19] El-Showk, Sheer, Solving the 3d Ising model with the conformal bootstrap II. \(c\)-minimization and precise critical exponents, J. Stat. Phys., 869-914 (2014) · Zbl 1310.82013 · doi:10.1007/s10955-014-1042-7
[20] Etingof, Pavel, On elliptic Calogero-Moser systems for complex crystallographic reflection groups, J. Algebra, 107-129 (2011) · Zbl 1243.14036 · doi:10.1016/j.jalgebra.2010.04.011
[21] Feh\'{e}r, L., Derivations of the trigonometric \(BC_n\) Sutherland model by quantum Hamiltonian reduction, Rev. Math. Phys., 699-732 (2010) · Zbl 1194.22024 · doi:10.1142/S0129055X10004065
[22] Feigin, Boris, Gaudin model, Bethe ansatz and critical level, Comm. Math. Phys., 27-62 (1994) · Zbl 0812.35103
[23] Ferrara, S., The shadow operator formalism for conformal algebra. Vacuum expectation values and operator products, Lett. Nuovo Cimento (2), 115-120 (1972)
[24] S. Ferrara, A. F. Grillo, G. Parisi, and Raoul Gatto, Covariant expansion of the conformal four-point function, Nucl. Phys. B49 (1972), 77-98, [Erratum: Nucl. Phys.B53,643(1973)].
[25] Fitzpatrick, A. Liam, The analytic bootstrap and AdS superhorizon locality, J. High Energy Phys., 004, front matter+34 pp. (2013) · Zbl 1342.83239 · doi:10.1007/JHEP12(2013)004
[26] Gaudin, M., Diagonalisation d’une classe d’Hamiltoniens de spin, J. Physique, 1089-1098 (1976) · doi:10.1051/jphys:0197600370100108700
[27] Gaudin, Michel, La fonction d’onde de Bethe, Collection du Commissariat \`a l’\'{E}nergie Atomique: S\'{e}rie Scientifique. [Collection of the Atomic Energy Commission: Science Series], xvi+331 pp. (1983), Masson, Paris · Zbl 0509.60093
[28] Harish-Chandra, Collected papers, Springer, 1984.
[29] Martin Hasenbusch, Finite size scaling study of lattice models in the three-dimensional Ising universality class, Phys. Rev. B 82 (2010), 174433.
[30] Heckman, Gerrit, Harmonic analysis and special functions on symmetric spaces, Perspectives in Mathematics, xii+225 pp. (1994), Academic Press, Inc., San Diego, CA · Zbl 0836.43001
[31] G. J. Heckman, Root systems and hypergeometric functions. I-II, Compositio Mathematica 64 (1987), no. 3, 329-373 and 353-373. · Zbl 0656.17007
[32] Heckman, G. J., Root systems and hypergeometric functions. II, Compositio Math., 353-373 (1987) · Zbl 0656.17007
[33] Heckman, G. J., Root systems and hypergeometric functions. I, Compositio Math., 329-352 (1987) · Zbl 0656.17006
[34] Helgason, Sigurdur, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, xv+628 pp. (1978), Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London · Zbl 0451.53038
[35] Matthijs Hogervorst and Slava Rychkov, Radial Coordinates for Conformal Blocks, Phys. Rev. D87 (2013), 106004. · Zbl 1342.81497
[36] Isachenkov, Mikhail, Calogero-Sutherland approach to defect blocks, J. High Energy Phys., 204, front matter+43 pp. (2018) · Zbl 1402.81227 · doi:10.1007/jhep10(2018)204
[37] Isachenkov, Mikhail, Superintegrability of \(d\)-dimensional conformal blocks, Phys. Rev. Lett., 071602, 5 pp. (2016) · doi:10.1103/PhysRevLett.117.071602
[38] Isachenkov, Mikhail, Integrability of conformal blocks. Part I. Calogero-Sutherland scattering theory, J. High Energy Phys., 180, front matter + 65 pp. (2018) · Zbl 1395.81227 · doi:10.1007/jhep07(2018)180
[39] Karateev, Denis, Weight shifting operators and conformal blocks, J. High Energy Phys., 081, front matter+80 pp. (2018) · Zbl 1387.81323 · doi:10.1007/jhep02(2018)081
[40] Kaviraj, Apratim, Analytic bootstrap at large spin, J. High Energy Phys., 083, front matter+32 pp. (2015) · Zbl 1390.81703 · doi:10.1007/JHEP11(2015)083
[41] Apratim Kaviraj, Kallol Sen, and Aninda Sinha, Universal anomalous dimensions at large spin and large twist, JHEP 07 (2015), 026. · Zbl 1388.83275
[42] Zohar Komargodski and Alexander Zhiboedov, Convexity and Liberation at Large Spin, JHEP 1311 (2013), 140.
[43] Koornwinder, Tom H., Okounkov’s \(BC\)-type interpolation MacDonald polynomials and their \(q=1\) limit, S\'{e}m. Lothar. Combin., Art. B72a, 27 pp. (2014/15) · Zbl 1331.33038
[44] Filip Kos, David Poland, and David Simmons-Duffin, Bootstrapping Mixed Correlators in the 3D Ising Model, JHEP 11 (2014), 109. · Zbl 1392.81202
[45] Filip Kos, David Poland, and David Simmons-Duffin, Bootstrapping the \(O(N)\) vector models, JHEP 06 (2014), 091. · Zbl 1392.81202
[46] Kos, Filip, Precision islands in the Ising and \(O(N)\) models, J. High Energy Phys., 036, front matter+15 pp. (2016) · Zbl 1390.81227 · doi:10.1007/JHEP08(2016)036
[47] Maldacena, Juan, The large-\(N\) limit of superconformal field theories and supergravity, Internat. J. Theoret. Phys., 1113-1133 (1999) · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[48] Molev, A. I., Feigin-Frenkel center in types \(B, C\) and \(D\), Invent. Math., 1-34 (2013) · Zbl 1266.17016 · doi:10.1007/s00222-012-0390-7
[49] Moser, J., Three integrable Hamiltonian systems connected with isospectral deformations, Advances in Math., 197-220 (1975) · Zbl 0303.34019 · doi:10.1016/0001-8708(75)90151-6
[50] Okounkov, A., \( \text{BC} \)-type interpolation Macdonald polynomials and binomial formula for Koornwinder polynomials, Transform. Groups, 181-207 (1998) · Zbl 0941.17005 · doi:10.1007/BF01236432
[51] Olshanetsky, M. A., Classical integrable finite-dimensional systems related to Lie algebras, Phys. Rep., 313-400 (1981) · doi:10.1016/0370-1573(81)90023-5
[52] Olshanetsky, M. A., Quantum integrable systems related to Lie algebras, Phys. Rep., 313-404 (1983) · doi:10.1016/0370-1573(83)90018-2
[53] E. M. Opdam, Root systems and hypergeometric functions iii, Compositio Mathematica 67 (1988), no. 1, 21-49 (eng). · Zbl 0669.33007
[54] Opdam, E. M., Root systems and hypergeometric functions III-IV, Compositio Mathematica 67 (1988), no. 1-2, 21-49 and 191-209. · Zbl 0669.33007
[55] Opdam, E. M., Root systems and hypergeometric functions. IV, Compositio Math., 191-209 (1988) · Zbl 0669.33008
[56] Opdam, Eric M., Lecture notes on Dunkl operators for real and complex reflection groups, MSJ Memoirs, viii+90 pp. (2000), Mathematical Society of Japan, Tokyo · Zbl 0984.33001
[57] Penedones, Jo\~{a}o, Recursion relations for conformal blocks, J. High Energy Phys., 070, front matter+49 pp. (2016) · Zbl 1390.81533 · doi:10.1007/JHEP09(2016)070
[58] Poland, David, The conformal bootstrap: theory, numerical techniques, and applications, Rev. Modern Phys., 015002, 74 pp. (2019) · doi:10.1103/RevModPhys.91.015002
[59] David Poland and David Simmons-Duffin, The conformal bootstrap, Nature Phys. 12 (2016), no. 6, 535-539.
[60] David Poland, David Simmons-Duffin, and Alessandro Vichi, Carving Out the Space of 4D CFTs, JHEP 05 (2012), 110.
[61] Polyakov, A. M., Non-Hamiltonian approach to conformal quantum field theory, Soviet Physics JETP. \v{Z}. \`Eksper. Teoret. Fiz., 23-42 (1974)
[62] Rains, Eric M., \( \text{BC}_n\)-symmetric polynomials, Transform. Groups, 63-132 (2005) · Zbl 1080.33018 · doi:10.1007/s00031-005-1003-y
[63] Rattazzi, Riccardo, Bounds in 4D conformal field theories with global symmetry, J. Phys. A, 035402, 24 pp. (2011) · Zbl 1206.81116 · doi:10.1088/1751-8113/44/3/035402
[64] Rattazzi, Riccardo, Bounding scalar operator dimensions in 4D CFT, J. High Energy Phys., 031, 49 pp. (2008) · Zbl 1329.81324 · doi:10.1088/1126-6708/2008/12/031
[65] Ruijsenaars, S. N. M., Action-angle maps and scattering theory for some finite-dimensional integrable systems. I. The pure soliton case, Comm. Math. Phys., 127-165 (1988) · Zbl 0667.58016
[66] Ruijsenaars, S. N. M., A new class of integrable systems and its relation to solitons, Ann. Physics, 370-405 (1986) · Zbl 0608.35071 · doi:10.1016/0003-4916(86)90097-7
[67] Rybnikov, Leonid, Cactus group and monodromy of Bethe vectors, Int. Math. Res. Not. IMRN, 202-235 (2018) · Zbl 1458.17009 · doi:10.1093/imrn/rnw259
[68] Schomerus, Volker, From spinning conformal blocks to matrix Calogero-Sutherland models, J. High Energy Phys., 052, front matter+28 pp. (2018) · Zbl 1390.81541 · doi:10.1007/jhep04(2018)052
[69] Schomerus, Volker, Harmony of spinning conformal blocks, J. High Energy Phys., 085, front matter+22 pp. (2017) · Zbl 1377.81182 · doi:10.1007/JHEP03(2017)085
[70] David Simmons-Duffin, The Conformal Bootstrap, Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings, 2 2016. · Zbl 1359.81165
[71] Jasper V. Stokman and Tom H. Koornwinder, Limit Transitions for BC Type Multivariable Orthogonal Polynomials, 2005. · Zbl 0881.33026
[72] Bill Sutherland, Exact results for a quantum many body problem in one dimension. 2., Phys. Rev. A5 (1972), 1372-1376.
[73] D. Talalaev, Quantization of the Gaudin system, (2004).
[74] Kenneth G. Wilson, Renormalization group and critical phenomena. 1. Renormalization group and the Kadanoff scaling picture, Phys. Rev. B 4 (1971), 3174-3183. · Zbl 1236.82017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.