×

Discontinuous Galerkin approximations to elliptic and parabolic problems with a Dirac line source. (English) Zbl 1514.65135

Summary: The analyses of interior penalty discontinuous Galerkin methods of any order \(k\) for solving elliptic and parabolic problems with Dirac line sources are presented. For the steady state case, we prove convergence of the method by deriving a priori error estimates in the \(L^2\) norm and in weighted energy norms. In addition, we prove almost optimal local error estimates in the energy norm for any approximation order. Further, almost optimal local error estimates in the \(L^2\) norm are obtained for the case of piecewise linear approximations whereas suboptimal error bounds in the \(L^2\) norm are shown for any polynomial degree. For the time-dependent case, convergence of semi-discrete and of backward Euler fully discrete scheme is established by proving error estimates in \(L^2\) in time and in space. Numerical results for the elliptic problem are added to support the theoretical results.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35J75 Singular elliptic equations
35K10 Second-order parabolic equations
35R06 PDEs with measure

References:

[1] R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Elsevier (2003). · Zbl 1098.46001
[2] S. Ariche, C. De Coster and S. Nicaise, Regularity of solutions of elliptic problems with a curved fracture. J. Math. Anal. App. 447 (2017) 908-932. · Zbl 1353.35089
[3] S. Bertoluzza, A. Decoene, L. Lacouture and S. Martin, Local error estimates of the finite element method for an elliptic problem with a Dirac source term. Numer. Methods Part. Differ. Equ. 34 (2018) 97-120. · Zbl 1390.65141
[4] S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods. Vol. 15. Springer Science & Business Media (2007).
[5] E. Casas, L^2 estimates for the finite element method for the Dirichlet problem with singular data. Numer. Math. 47 (1985) 627-632. · Zbl 0561.65071
[6] L. Cattaneo and P. Zunino, A computational model of drug delivery through microcirculation to compare different tumor treatments. Int. J. Numer. Methods Biomed. Eng. 30 (2014) 1347-1371. · doi:10.1002/cnm.2661
[7] Z. Chen and H. Chen, Pointwise error estimates of discontinuous Galerkin methods with penalty for second-order elliptic problems. SIAM J. Numer. Anal. 42 (2004) 1146-1166. · Zbl 1081.65102
[8] W. Choi and S. Lee, Optimal error estimate of elliptic problems with Dirac sources for discontinuous and enriched Galerkin methods. Appl. Numer. Math. 150 (2020) 76-104. · Zbl 1434.65242 · doi:10.1016/j.apnum.2019.09.010
[9] K. Chrysafinos and L. Steven Hou, Error estimates for semidiscrete finite element approximations of linear and semilinear parabolic equations under minimal regularity assumptions. SIAM J. Numer. Anal. 40 (2002) 282-306. · Zbl 1020.65068
[10] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. SIAM (2002). · Zbl 0999.65129
[11] C. D’Angelo, Multiscale modelling of metabolism and transport phenomena in living tissues. Technical report, EPFL (2007).
[12] C. D’Angelo, Finite element approximation of elliptic problems with Dirac measure terms in weighted spaces: applications to one-and three-dimensional coupled problems. SIAM J. Numer. Anal. 50 (2012) 194-215. · Zbl 1246.65215
[13] C. D’Angelo and A. Quarteroni, On the coupling of 1D and 3D diffusion-reaction equations: application to tissue perfusion problems. Math. Models Methods Appl. Sci. 18 (2008) 1481-1504. · Zbl 1359.35200
[14] M.C. Delfour and J.-P. Zolésio, Shape analysis via oriented distance functions. J. Funct. Anal. 123 (1994) 129-201. · Zbl 0814.49032
[15] D. Di Pietro and A. Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations. Math. Comput. 79 (2010) 1303-1330. · Zbl 1369.76024
[16] I. Drelichman, R.G. Durán and I. Ojea, A weighted setting for the numerical approximation of the Poisson problem with singular sources. SIAM J. Numer. Anal. 58 (2020) 590-606. · Zbl 1447.65135
[17] R.G. Durán and F. López Garca, Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains. Math. Models Methods Appl. Sci. 20 (2010) 95-120. · Zbl 1217.26027
[18] L.C. Evans, Partial Differential Equations. American Mathematical Society (2010). · Zbl 1194.35001
[19] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer (2015).
[20] I.G. Gjerde, K. Kumar, J.M. Nordbotten and B. Wohlmuth, Splitting method for elliptic equations with line sources. ESAIM: Math. Modell. Numer. Anal. 53 (2019) 1715-1739. · Zbl 1433.35129 · doi:10.1051/m2an/2019027
[21] I.G. Gjerde, K. Kumar and J.M. Nordbotten, A singularity removal method for coupled 1D-3D flow models. Comput. Geosci. 24 (2020) 443-457. · Zbl 1434.76067 · doi:10.1007/s10596-019-09899-4
[22] W. Gong, Error estimates for finite element approximations of parabolic equations with measure data. Math. Comput. 82 (2013) 69-98. · Zbl 1260.49051
[23] W. Gong and N. Yan, Finite element approximations of parabolic optimal control problems with controls acting on a lower dimensional manifold. SIAM J. Numer. Anal. 54 (2016) 1229-1262. · Zbl 1343.49044
[24] W. Gong, G. Wang and N. Yan, Approximations of elliptic optimal control problems with controls acting on a lower dimensional manifold. SIAM J. Control Optim. 52 (2014) 2008-2035. · Zbl 1298.49048
[25] P. Houston and T.P. Wihler, Discontinuous Galerkin methods for problems with Dirac delta source. ESAIM: Math. Modell. Numer. Anal. - Modél. Math. Anal. Numér. 46 (2012) 1467-1483. · Zbl 1272.65092 · doi:10.1051/m2an/2012010
[26] T. Köppl and B. Wohlmuth, Optimal a priori error estimates for an elliptic problem with Dirac right-hand side. SIAM J. Numer. Anal. 52 (2014) 1753-1769. · Zbl 1307.65154
[27] T. Köppl, E. Vidotto and B. Wohlmuth, A local error estimate for the Poisson equation with a line source term, in Numerical Mathematics and Advanced Applications ENUMATH 2015. Springer (2016) 421-429. · Zbl 1352.65441
[28] H. Leng and Y. Chen, A hybridizable discontinuous Galerkin method for second order elliptic equations with Dirac delta source. ESAIM: Math. Modell. Numer. Anal. 56 (2022) 385-406. · Zbl 1492.65318 · doi:10.1051/m2an/2022005
[29] P.A. Nguyen and J.-P. Raymond, Control problems for convection-diffusion equations with control localized on manifolds. ESAIM: Control Optim. Calculus Variations 6 (2001) 467-488. · Zbl 1004.49019 · doi:10.1051/cocv:2001118
[30] J.A. Nitsche and A.H. Schatz, Interior estimates for Ritz-Galerkin methods. Math. Comput. 28 (1974) 937-958. · Zbl 0298.65071
[31] R.H. Nochetto, E. Otárola and A.J. Salgado, Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications. Numer. Math. 132 (2016) 85-130. · Zbl 1334.65030
[32] I. Ojea, Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources. ESAIM: Math. Modell. Numer. Anal. 55 (2021) S879-S907. · Zbl 1473.35126 · doi:10.1051/m2an/2020065
[33] B. Riviere, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM (2008). · Zbl 1153.65112 · doi:10.1137/1.9780898717440
[34] R. Scott, Finite element convergence for singular data. Numer. Math. 21 (1973) 317-327. · Zbl 0255.65037
[35] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Vol. 25. Springer Science & Business Media (2007).
[36] L.B. Wahlbin, Local behavior in finite element methods. Handb. Numer. Anal. 2 (1991) 353-522. · Zbl 0875.65089
[37] C. Waluga and B. Wohlmuth, Quasi-optimal a priori interface error bounds and a posteriori estimates for the interior penalty method. SIAM J. Numer. Anal. 51 (2013) 3259-3279. · Zbl 1285.65073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.