×

Lattice points in the Newton polytopes of key polynomials. (English) Zbl 1514.52012

Demazure polynomials (called key polynomials in the paper) are multivariate polynomials \(\kappa_{\alpha}(x)\) defined for \(x\in \mathbb{R}^n\) and \(\alpha\in \mathbb{Z}^n_{\geq 0}\). They are the characters of the Demazure module of the general lineral group. The paper gives the combinatorial construction of those polytopes.
The Newton polytope of \(\kappa_{\alpha}(x)\) is the convex hull of the \(\gamma\) such that the coefficient \(c_{\gamma}\) of \(x^{\gamma}\) is non-zero in \(\kappa_{\alpha}(x)\).
Let \((\alpha_1, \dots, \alpha_n)\in \mathbb{Z}^n_{\geq 0}\). For \(1\leq i < j \leq n\), let \(t_{i,j}(\alpha)\) be the composition obtained from \(\alpha\) by interchanging \(\alpha_i\) and \(\alpha_j\). and let \(m_{i,j}(\alpha) = \alpha + e_i - e_j\). For a vector \(\beta\in \mathbb{Z}^n_{\geq 0}\) define \(\beta \leq_{k} \alpha\) if \(\beta\) can be generated from \(\alpha\) by applying a sequence of moves \(t_{i,j}\) for \(\alpha_i < \alpha_j\) and \(m_{i,j}\) for \(\alpha_i < \alpha_j - 1\).
The authors prove the Monikal-Tokcan-Yong conjecture, that is a vector is an exponent vector of the Newton polytope of \(\kappa_{\alpha}\) if and only if \(\beta \leq_k \alpha\). As a consequence, they prove that the Newton polytope of \(\kappa_{\beta}\) is contained in the Newton polytope of \(\kappa_{\alpha}\) if and only if \(\beta\leq_k \alpha\).

MSC:

52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry)
05E05 Symmetric functions and generalizations

References:

[1] M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4), 7 (1974), pp. 53-88. · Zbl 0312.14009
[2] M. Demazure, Une nouvelle formule des caractéres, Bull. Sci. Math. (2), 98 (1974), pp. 163-172. · Zbl 0365.17005
[3] N.J.Y. Fan and P.L. Guo, Vertices of Schubitopes, preprint, https://arxiv.org/abs/1910.02816, 2019.
[4] A. Fink, K. Mészáros, and A. St.Dizier, Schubert polynomials as integer point transforms of generalized permutahedra, Adv. Math., 332 (2018), pp. 465-475. · Zbl 1443.05179
[5] J. Haglund, K. Luoto, S. Mason, and S. van Willigenburg, Refinements of the Littlewood-Richardson rule, Trans. Amer. Math. Soc., 363 (2011), pp. 1665-1686. · Zbl 1229.05269
[6] B. Ion, Nonsymmetric Macdonald polynomials and Demazure characters, Duke Math. J., 116 (2003), pp. 299-318. · Zbl 1039.33008
[7] Y. Kodama and L. Williams, The full Kostant-Toda hierarchy on the positive flag variety, Comm. Math. Phys., 335 (2015), pp. 247-283. · Zbl 1319.37048
[8] W. Kraśkiewicz and P. Pragacz, Foncteurs de Schubert, C. R. Acad. Sci. Paris Sér. I Math., 304 (1987), pp. 209-211. · Zbl 0642.13011
[9] W. Kraśkiewicz and P. Pragacz, Schubert functors and Schubert polynomials, European J. Combin., 25 (2004), pp. 1327-1344. · Zbl 1062.14065
[10] A. Lascoux and M.-P. Schützenberger, Keys & standard bases, in Invariant Theory and Tableaux (Minneapolis, MN, 1988), IMA Vol. Math. Appl. 19, Springer, New York, 1990, pp. 125-144. · Zbl 0815.20013
[11] A. Lascoux and M.-P. Schützenberger, Tableaux and non-commutative Schubert polynomials, Funct. Anal. Appl., 23 (1989), pp. 63-64. · Zbl 0717.20017
[12] P. Magyar, Schubert polynomials and Bott-Samelson varieties, Comment. Math. Helv., 73 (1998), pp. 603-636. · Zbl 0951.14036
[13] S. Mason, An explicit construction of type \(A\) Demazure atoms, J. Algebraic Combin., 29 (2009), pp. 295-313. · Zbl 1210.05175
[14] C. Monical, N. Tokcan, and A. Yong, Newton polytopes in algebraic combinatorics, Selecta Math. (N.S.), 25 (2019), 66. · Zbl 1426.05175
[15] R. Rado, An inequality, J. London Math. Soc., 27 (1952), pp. 1-6. · Zbl 0047.29701
[16] V. Reiner and M. Shimozono, Key polynomials and a flagged Littlewood-Richardson rule, J. Combin. Theory Ser. A, 70 (1995), pp. 107-143. · Zbl 0819.05058
[17] E. Tsukerman and L. Williams, Bruhat interval polytopes, Adv. Math., 285 (2015), pp. 766-810. · Zbl 1323.05010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.