×

Singular versus boundary arcs for aircraft trajectory optimization in climbing phase. (English) Zbl 1514.49013

Summary: In this article, we are interested in optimal aircraft trajectories in climbing phase. We consider the cost index criterion which is a convex combination of the time-to-climb and the fuel consumption. We assume that the thrust is constant and we control the flight path angle of the aircraft. This optimization problem is modeled as a Mayer optimal control problem with a single-input affine dynamics in the control and with two pure state constraints, limiting the Calibrated AirSpeed (CAS) and the Mach speed. The candidates as minimizers are selected among a set of extremals given by the maximum principle. We first analyze the minimum time-to-climb problem with respect to the bounds of the state constraints, combining small time analysis, indirect multiple shooting and homotopy methods with monitoring. This investigation emphasizes two strategies: the common CAS/Mach procedure in aeronautics and the classical Bang-Singular-Bang policy in control theory. We then compare these two procedures for the cost index criterion.

MSC:

49K15 Optimality conditions for problems involving ordinary differential equations
49M05 Numerical methods based on necessary conditions
49S05 Variational principles of physics
93B27 Geometric methods
70Q05 Control of mechanical systems

Software:

Bocop

References:

[1] E. Allgower and K. Georg, Introduction to Numerical Continuation Methods. Vol. 45 of Classics in Applied Mathematics. Soc. for Industrial and Applied Math, Philadelphia, PA, USA, 2003.
[2] M.D. Ardema, Solution of the minimum time-to-climb problem by matched asymptotic expansions. AIAA J. 14 (1976) 843-850. · Zbl 0338.70005 · doi:10.2514/3.7161
[3] M.D. Ardema, Singular perturbations in flight mechanics . Ph.D. thesis (1977).
[4] J.F. Barman, H. Erzenberg, J.D. McLean, Fixed-range optimum trajectories for short-haul aircraft. Technical note NASA TN D-8115. NASA Ames Research Center (1975).
[5] H.G. Bock and K.J. Plitt, A multiple shooting algorithm for direct solution of optimal control problems. IFAC Proc. Vol. 17 (1984) 1603-1608. 9th IFAC World Congress: A Bridge Between Control Science and Technology, Budapest, Hungary, 1984. · doi:10.1016/S1474-6670(17)61205-9
[6] J.F. Bonnans, D. Giorgi, V. Grelard, B. Heymann, S. Maindrault, P. Martinon, O. Tissot, Bocop – a collection of examples, Technical reportINRIA(2016).
[7] B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory. Springer-Verlag, Berlin, Heidelberg, Paris (2003). · Zbl 1022.93003
[8] B. Bonnard, L. Faubourg, G. Launay and E. Trélat, Optimal control with state constraints and the space shuttle re-entry problem. J. Dyn. Control Syst. 9 (2003) 155-199. · Zbl 1034.49014 · doi:10.1023/A:1023289721398
[9] B. Bonnard, L. Faubourg and E. Trélat, Mécanique céleste et contrôle des véhicules spatiaux. Springer-Verlag, Berlin, Heidelberg, New-York (2006). · Zbl 1104.70001
[10] B. Bonnard, M. Claeys, O. Cots and P. Martinon, Geometric and numerical methods in the contrast imaging problem in nuclear magnetic resonance. Acta App. Math. 135 (2015) 5-45. · Zbl 1311.49065 · doi:10.1007/s10440-014-9947-3
[11] R. Bulirsch and J. Stoer, Introduction to Numerical Analysis. Springer, New-York (2002). · Zbl 1004.65001
[12] J.-B. Caillau, O. Cots and J. Gergaud, Differential continuation for regular optimal control problems. Optim. Methods Softw. 27 (2012) 177-196. · Zbl 1248.49025
[13] A.J. Calise and D.S. Naidu, Singular perturbations and time scales in guidance and control of aerospace systems: a survey. J. Guidance Control Dyn. 24 (2001) 1057-1078.
[14] A. Casamayou, N. Cohen, G. Connan, T. Dumont, L. Fousse, F. Maltey, M. Meulien, M. Mezzarobba, C. Pernet, N.M. Thiéry and P. Zimmermann, Calcul mathématique avec. Sage. Technical report (2013).
[15] J.R. Cash, The numerical solution of nonlinear two-point boundary value problems using iterated deferred correction – a survey, Opuscula Math. 26 (2006) 269-287. · Zbl 1132.65061
[16] J.R. Cash, G. Moore, R.W. Wright, An automatic continuation strategy for the solution of singularly perturbed nonlinear boundary value problems. ACM Trans. Math. Softw. 27 (2001) 245-266. · Zbl 1070.65554 · doi:10.1145/383738.383742
[17] O. Cots, Geometric and numerical methods for a state constrained minimum time control problem of an electric vehicle. ESAIM: COCV 23 (2017) 1715-1749. · Zbl 1379.49025
[18] O. Cots, P. Delpy, J. Gergaud and D. Goubinat, On the minimum time optimal control problem of an aircraft in its climbing phase, in EUropean Conference for Aeronautics and Aerospace sciences (EUCASS), Milano (2017).
[19] O. Cots, J. Gergaud and D. Goubinat, Time-optimal aircraft trajectories in climbing phase and singular perturbations, IFAC-PapersOnLine 50 (2017) 1625-1630. Proceedings of the 20th World Congress of the International Federation of Automatic Control, IFAC 2017 World Congress, Toulouse, France, 9-14 July 2017. · doi:10.1016/j.ifacol.2017.08.327
[20] O. Cots, J. Gergaud and D. Goubinat, Direct and indirect methods in optimal control with state constraints and the climbing trajectory of an aircraft. Optim. Control Appl. Meth. 39 (2018) 281-301. · Zbl 1390.49054
[21] O. Cots, J. Gergaud and B. Wembe, Homotopic approach for turnpike and singularly perturbed optimal control problems. ESAIM: ProcS 71 (2021) 43-53. Proceedings of FGS’2019 - 19th French-German-Swiss conference on Optimization. · Zbl 1525.49025 · doi:10.1051/proc/202171105
[22] A.F. Espin, Aircraft trajectory optimization using singular optimal control theory. Universidad de Sevilla. Ph.D. thesis, (2014).
[23] J. Gergaud, Sur la résolution numérique de problèmes de contrôle optimal à solution bang-bang via les méthodes homotopiques. Habilitation à diriger des recherches, INP-ENSEEIHT-IRIT (2008).
[24] D. Goubinat, Contrôle optimal géométrique et méthodes numériques: application à un problème de montée d’un avion, Ph.D. thesis, INP-ENSEEIHT (2017).
[25] D.G. Hull, Fundamentals of Airplane Flight Mechanics. Springer, Heidelberg (2007). · Zbl 1126.76001
[26] D.H. Jacobson, M.M. Lele and J.L. Speyer, New necessary conditions of optimality for control problems with state-variable inequality constraints. J. Math. Anal. Appl. 35 (1971) 255-284. · Zbl 0188.47203
[27] A.J. Krener, The high order maximal principle and its application to singular extremals. SIAM J. Control Optim. 1 (1977) 256-293. · Zbl 0354.49008
[28] I. Kupka, Geometric theory of extremals in optimal control problems. I. The fold and maxwell case. Trans. Amer. Math. Soc. 299 (1987) 225-243. · Zbl 0606.49016
[29] H. Maurer, On optimal control problems with bounded state variables and control appearing linearly. SIAM J. Cont. Optim. 15 (1977) 345-362. · Zbl 0358.49008
[30] M. Le Merrer, Optimisation de trajectoire d’avion pour la prise en compte du bruit dans la gestion du, vol, Ph.D. thesis, ISAE-SUPAERO (2012).
[31] A. Miele, General solutions of optimum problems in nonstationnary flight. National Advisory Comittee for Aeronautics (NACA), Technical memorandum 1388 (1955).
[32] A. Miele, Optimum flight paths of turbojet aircraft. Technical memorandum 1389, National Advisory Comittee for Aeronautics (NACA) (1955).
[33] N. Moissev, Problèmes mathématiques d’analyse des systèmes. Mir Moscou (1985).
[34] N. Nguyen, Singular arc time-optimal climb trajectory of aircraft in a two-dimensional wind field, AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA, Keystone, Colorado (2006).
[35] D. Poles, Base of Aircraft DAta (BADA) aircraft performance modelling report, Technical ReportEurocontrol (2009).
[36] L. Pontryagin, V. Boltianskii, R. Gamkrelidize and E. Mishchenko, The Mathematical Theory of Optimal Processes. Translated from the Russian by K. Trirogoff; edited by L.W. Neustadt (Ed.), Interscience Publishers John Wiley & Sons, New-York-London (1962). · Zbl 0102.32001
[37] J. Verriere, Mécanique du vol, performances Notes de cours, Tome 2, ISAE-Formation ENSICA (1997).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.