×

\(\mathcal{L}\)-invariant and radial singular integral operators on the Fock space. (English) Zbl 1514.42013

Summary: For a unitary matrix \(X\) of order \(n\) over the field of complex numbers and an entire function \(\varphi\) belonging to the Fock space \(\mathfrak{F}^2:=\mathfrak{F}^2(\mathbb{C}^n)\), we define an integral operator on \(\mathfrak{F}^2(\mathbb{C}^n)\) of the form \[ (H_\varphi^X f)(z) = \int_{\mathbb{C}^n} f(w)\varphi (z+X^\ast\overline{Xw})e^{z\overline{w}} d\lambda (w). \] Here \(d\lambda (z) = \pi^{-n} e^{-\vert z\vert^2}dz\) is a Gaussian measure on \(\mathbb{C}^n\). We characterize all the symbols \(\varphi\) for which the operator \(H_\varphi^X\) is bounded. Next, we consider integral operator on \(\mathfrak{F}^2\) defined by \[ (R_\varphi f)(z) = \int_{\mathbb{C}^n} f(w) \varphi (z\star \bar{w})d\lambda (w) \] for \(\varphi \in \mathfrak{F}^2\), where \(\star\) is a coordinatewise multiplication. We give a complete characterization for the symbols \(\varphi \in \mathfrak{F}^2(\mathbb{C}^n)\) so that the operator \(R_\varphi\) is bounded on \(\mathfrak{F}^2\). In addition to boundedness, we also obtain some fundamental results for the operators \(H_\varphi^X\) and \(R_\varphi\) such as normality, the \(C^\ast\)-algebra properties, the spectrum and the compactness. Moreover, we characterize the common reducing subspaces for each of the collections \[ \mathfrak{B}^X = \Big \{H_\varphi^X \in \mathcal{B}(\mathfrak{F}^2) : \varphi \in \mathfrak{F}^2 \Big \}, \mathfrak{R} = \Big \{R_\varphi \in \mathcal{B}(\mathfrak{F}^2) : \varphi \in \mathfrak{F}^2\Big \}, \] respectively.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B15 Multipliers for harmonic analysis in several variables
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
30H20 Bergman spaces and Fock spaces
47G10 Integral operators
47A15 Invariant subspaces of linear operators
Full Text: DOI

References:

[1] Bais, SR; Naidu, DV, Study of twisted Bargmann transform via Bargmann transform, Forum Math., 33, 6, 1659-1670 (2021) · Zbl 1486.30142 · doi:10.1515/forum-2021-0113
[2] Bargmann, V., On a Hilbert space of analytic functions and an associated integral transform, Commun. Pure Appl. Math., 14, 187-214 (1961) · Zbl 0107.09102 · doi:10.1002/cpa.3160140303
[3] Berger, CA; Coburn, LA, Heat flow and Berezin-Toeplitz estimates, Am. J. Math., 116, 3, 563-590 (1994) · Zbl 0839.46018 · doi:10.2307/2374991
[4] Bhatia, R., Notes on Functional Analysis (2009), New Delhi: Hindustan Book Agency, New Delhi · Zbl 1175.46001
[5] Cao, G.; Li, J.; Shen, M.; Wick, BD; Yan, L., A boundedness criterion for singular integral operators of convolution type on the Fock space, Adv. Math., 363, 107001 (2020) · Zbl 1437.32001 · doi:10.1016/j.aim.2020.107001
[6] de Gosson, MA, Symplectic methods in harmonic analysis and in mathematical physics, Pseudo-Differential Operators Theory and Applications (2011), Basel: Birkhäuser/Springer, Basel · Zbl 1247.81510
[7] Esmeral, K.; Vasilevski, N., C*-algebra generated by horizontal Toeplitz operators on the Fock space, Bol. Soc. Mat. Mex. (3), 22, 2, 567-582 (2016) · Zbl 1369.47033 · doi:10.1007/s40590-016-0110-1
[8] Feichtinger, HG; Krishna, M.; Radha, R.; Thangavelu, S., Modulation spaces on locally compact abelian groups, Wavelets and their Applications, Chennai, India, 99-140 (2003), New Delhi: Allied Publishers, New Delhi
[9] Folland, BG, Harmonic Analysis in Phase Space (1989), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0682.43001 · doi:10.1515/9781400882427
[10] Gröchenig, K., Foundations of time-frequency analysis, Applied and Numerical Harmonic Analysis (2001), Boston: Birkhäuser Boston Inc, Boston · Zbl 0966.42020
[11] Grudsky, SM; Vasilevski, NL, Toeplitz operators on the Fock space: radial component effects, Integr. Equ. Oper. Theory, 44, 1, 10-37 (2002) · Zbl 1039.47015 · doi:10.1007/BF01197858
[12] Herrera Yañez, C.; Maximenko, EA; Vasilevski, N., Vertical Toeplitz operators on the upper half-plane and very slowly oscillating functions, Integr. Equ. Oper. Theory, 77, 2, 149-166 (2013) · Zbl 1293.47029 · doi:10.1007/s00020-013-2081-1
[13] Heydar, R.; Rosenthal, P., Invariant subspaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (1973), New York: Springer, New York · Zbl 0269.47003
[14] Signahl, M.; Toft, J., Mapping properties for the Bargmann transform on modulation spaces, J. Pseudo-Differ. Oper. Appl., 3, 1, 1-30 (2012) · Zbl 1260.42014 · doi:10.1007/s11868-011-0039-0
[15] Toft, J., The Bargmann transform on modulation and Gelfand-Shilov spaces, with applications to Toeplitz and pseudo-differential operators, J. Pseudo-Differ. Oper. Appl., 3, 2, 145-227 (2012) · Zbl 1257.42033 · doi:10.1007/s11868-011-0044-3
[16] Vasilevski, NL, Commutative Algebras of Toeplitz Operators on the Bergman Space (2008), Basel: Birkhäuser Verlag, Basel · Zbl 1168.47057
[17] Zhu, K., Analysis on Fock Spaces (2012), New York: Springer, New York · Zbl 1262.30003
[18] Zhu, K., Singular integral operators on the Fock space, Integr. Equ. Oper. Theory, 81, 4, 451-454 (2015) · Zbl 1332.30083 · doi:10.1007/s00020-015-2222-9
[19] Zhu, K., Handbook of Analytic Operator Theory (2019), Boca Raton: CRC Press, Boca Raton · Zbl 1415.30001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.