×

Smooth orthonormal basis for \(L_2(\mathbb{R}^2)\) using smooth projections on \(L_2(\mathbb{R}^2)\) associated with rectangles in \(\mathbb{R}^2\). (English) Zbl 1514.42009

Summary: For \(L_2(\mathbb{R}^2)\), one can easily construct an orthonormal basis from an orthonormal basis of \(L_2(\mathbb{R})\) using the tensor product; and that orthonormal basis is in fact separable orthonormal basis. The separable basis have a number of disadvantages, as they have very little design freedom. Furthermore, the separability imposes an unnecessary product structure on \(\mathbb{R}^2\), that is artificial for natural images. In this paper, we construct a compactly supported nonseparable smooth orthonormal basis for \(L_2({\mathbb{R}}^2)\) by constructing smooth projection \(P_{I\times M}\) associated with a rectangle \(I\times M=[a,b]\times [c,d]\subset \mathbb{R}^2\) on \(L_2({\mathbb{R}}^2)\) without using tensor product.

MSC:

42A65 Completeness of sets of functions in one variable harmonic analysis
42B05 Fourier series and coefficients in several variables
42C30 Completeness of sets of functions in nontrigonometric harmonic analysis
Full Text: DOI

References:

[1] Auscher, P., G. Weiss, and M. Victor Wickerhauser. 1991. Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets. In Wavelets: a tutorial in theory and applications, 237-256. · Zbl 0767.42009
[2] Belogay, E.; Wang, Y., Arbitrarily smooth orthogonal nonseparable wavelets in \({\mathbb{R} }^2\), SIAM Journal on Mathematical Analysis, 30, 3, 678-697 (1997) · Zbl 0946.42025 · doi:10.1137/S0036141097327732
[3] Bodmann, BG; Labate, D.; Pahari, BR, Smooth projections and the construction of smooth Parseval frames of shearlets, Advances in Computational Mathematics, 45, 3241-3264 (2019) · Zbl 1434.42048 · doi:10.1007/s10444-019-09736-3
[4] Bownik, M.; Dziedziul, K., Smooth orthogonal projections on sphere, Constructive Approximation, 41, 23-48 (2015) · Zbl 1311.42087 · doi:10.1007/s00365-014-9271-1
[5] Bownik, M.; Dziedziul, K.; Kamont, A., Smooth orthogonal projections on Riemannian manifold, Potential Analysis, 54, 41-94 (2021) · Zbl 1457.46036 · doi:10.1007/s11118-019-09818-3
[6] Chung, M., Riesz basis of Coifman and Meyer’s local sine and cosine type, Journal of Mathematical Analysis and Applications, 285, 456-462 (2003) · Zbl 1030.42026 · doi:10.1016/S0022-247X(03)00411-6
[7] Chung, M., The construction of the Lemarie-Meyer smooth wavelets with respect to a Riesz Basis, International Journal of Mathematical Analysis, 38, 1891-1898 (2010) · Zbl 1222.42034
[8] Fry, R.; McManus, S., Smooth bump functions and the geometry of Banch spaces: A brief survey, Expositiones Mathematicae, 20, 143-183 (2002) · Zbl 1014.46007 · doi:10.1016/S0723-0869(02)80017-2
[9] Hernàndez, E.; Weiss, G., A First Course on Wavelets (1996), Boca Raton: CRC Press, Boca Raton · Zbl 0885.42018 · doi:10.1201/9780367802349
[10] San Antolìn, A., and R.A. Zalik. 2013. A family of nonseparable smooth compactly supported wavelets. International Journal of Wavelets Multiresolution Information Process. 11(2) · Zbl 1271.42051
[11] Kovacevic, J.; Vetterli, M., Nonseparable two and three-dimensional wavelets, IEEE Trans. Signal Process., 43, 1269-1273 (1995) · doi:10.1109/78.382414
[12] Wickerhauser, MV, Smooth localized orthonormal bases, CR Acad Sci Paris, 316, 423-427 (1993) · Zbl 0772.42019
[13] Warner, DW; Healy, DM; Rockmore, DN, A smooth non-rectangular time-frequency segmentation of \(L_2({\mathbb{R} }^2)\), Image Processing, 1, 695-698 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.