×

On the fourth order semipositone problem in \(\mathbb{R}^N\). (English) Zbl 1514.35149

Summary: For \(N \geq 5\) and \(a>0\), we consider the following semipositone problem \[ \Delta^2 u = g(x) f_a(u) \text{ in } \mathbb{R}^N, \text{ and } u \in \mathcal{D}^{2, 2}(\mathbb{R}^N), \qquad \quad \text{(SP)} \] where \(g \in L^1_{loc}(\mathbb{R}^N)\) is an indefinite weight function, \(f_a : \mathbb{R} \to \mathbb{R}\) is a continuous function that satisfies \(f_a(t) = -a\) for \(t \in \mathbb{R}^-\), and \(\mathcal{D}^{2, 2}(\mathbb{R}^N)\) is the completion of \(\mathcal{C}_c^{\infty}(\mathbb{R}^N)\) with respect to \((\int_{\mathbb{R}^N} (\Delta u)^2)^{1/2}\). For \(f_a\) satisfying subcritical nonlinearity and a weaker Ambrosetti-Rabinowitz type growth condition, we find the existence of \(a_1>0\) such that for each \(a \in (0, a_1)\), (SP) admits a mountain pass solution. Further, we show that the mountain pass solution is positive if \(a\) is near zero. For the positivity, we derive uniform regularity estimates of the solutions of (SP) for certain ranges in \((0, a_1)\), relying on the Riesz potential of the biharmonic operator.

MSC:

35J30 Higher-order elliptic equations
35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
35A01 Existence problems for PDEs: global existence, local existence, non-existence

References:

[1] W. P. P. Allegretto Nistri Zecca, Positive solutions of elliptic nonpositone problems, Differential Integral Equations, 5, 95-101 (1992) · Zbl 0758.35032
[2] C. O. A. R. F. J. A. Alves de Holanda dos Santos, Existence of positive solutions for a class of semipositone problem in whole \(\mathbb{R}^N\), Proc. Roy. Soc. Edinburgh Sect. A, 150, 2349-2367 (2020) · Zbl 1459.35206 · doi:10.1017/prm.2019.20
[3] A. P. H. Ambrosetti Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14, 349-381 (1973) · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[4] H. T. Brézis Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl., 58, 137-151 (1979) · Zbl 0408.35025
[5] K. J. R. Brown Shivaji, Simple proofs of some results in perturbed bifurcation theory, Proc. Roy. Soc. Edinburgh Sect. A, 93, 71-82 (1982/83) · Zbl 0511.35007 · doi:10.1017/S030821050003167X
[6] A. D. G. E. Castro de Figueredo Lopera, Existence of positive solutions for a semipositone \(p\)-Laplacian problem, Proc. Roy. Soc. Edinburgh Sect. A, 146, 475-482 (2016) · Zbl 1358.35045 · doi:10.1017/S0308210515000657
[7] A. M. R. Castro Hassanpour Shivaji, Uniqueness of non-negative solutions for a semipositone problem with concave nonlinearity, Comm. Partial Differential Equations, 20, 1927-1936 (1995) · Zbl 0836.35049 · doi:10.1080/03605309508821157
[8] A. R. Castro Shivaji, Nonnegative solutions for a class of nonpositone problems, Proc. Roy. Soc. Edinburgh Sect. A, 108, 291-302 (1988) · Zbl 0659.34018 · doi:10.1017/S0308210500014670
[9] G. Cerami, An existence criterion for the critical points on unbounded manifolds, Istit. Lombardo Accad. Sci. Lett. Rend. A, 112, 332-336 (1978) · Zbl 0436.58006
[10] M. P. R. Chhetri Drábek Shivaji, Existence of positive solutions for a class of \(p\)-Laplacian superlinear semipositone problems, Proc. Roy. Soc. Edinburgh Sect. A, 145, 925-936 (2015) · Zbl 1335.35080 · doi:10.1017/S0308210515000220
[11] D. G. H. H. Costa Ramos Quoirin Tehrani, A variational approach to superlinear semipositone elliptic problems, Proc. Amer. Math. Soc., 145, 2661-2675 (2017) · Zbl 1367.35070 · doi:10.1090/proc/13426
[12] R. G. A. Dal Passo Lorenzo Shishkov, The thin film equation with nonlinear diffusion, Comm. Partial Differential Equations, 26, 1509-1557 (2001) · Zbl 1001.35070 · doi:10.1081/PDE-100107451
[13] L. E. D’Ambrosio Jannelli, Nonlinear critical problems for the biharmonic operator with {H}ardy potential, Calc. Var. Partial Differential Equations, 54, 365-396 (2015) · Zbl 1330.35145 · doi:10.1007/s00526-014-0789-7
[14] E. N. Dancer and Z. Zhang, Critical point, anti-maximum principle and semipositone \(p\)-Laplacian problems, Discrete Contin. Dyn. Syst., (2005), 209-215. · Zbl 1144.35384
[15] F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, volume 1991 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010. Positivity preserving and nonlinear higher order elliptic equations in bounded domains.
[16] D. D. R. Hai Shivaji, An existence result on positive solutions for a class of semilinear elliptic systems, Proc. Roy. Soc. Edinburgh Sect. A, 134, 137-141 (2004) · Zbl 1067.35026 · doi:10.1017/S0308210500003115
[17] L. S. P. Iturriaga Lorca Ubilla, A quasilinear problem without the Ambrosetti-Rabinowitz-type condition, Proc. Roy. Soc. Edinburgh Sect. A, 140, 391-398 (2010) · Zbl 1194.35183 · doi:10.1017/S0308210509000432
[18] B. M. S. Kawohl Lucia Prashanth, Simplicity of the principal eigenvalue for indefinite quasilinear problems, Adv. Differential Equations, 12, 407-434 (2007) · Zbl 1158.35069
[19] Y.-Y. C.-L. Lan Tang, Existence of solutions to a class of semilinear elliptic equations involving general subcritical growth, Proc. Roy. Soc. Edinburgh Sect. A, 144, 809-818 (2014) · Zbl 1298.35051 · doi:10.1017/S030821051300036X
[20] E. H. Lieb and M. Loss, Analysis, volume 14 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, second edition, 2001. · Zbl 0966.26002
[21] R. Ma, Multiple positive solutions for a semipositone fourth-order boundary value problem, Hiroshima Math. J., 33, 217-227 (2003) · Zbl 1048.34048 · doi:10.32917/hmj/1150997947
[22] J. Mederski and J. Siemianowski, Biharmonic nonlinear scalar field equations, 2021.
[23] O. H. M. A. S. Miyagaki Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations, 245, 3628-3638 (2008) · Zbl 1158.35400 · doi:10.1016/j.jde.2008.02.035
[24] J. Nečas, Direct Methods in the Theory of Elliptic Equations, Springer Monographs in Mathematics. Springer, Heidelberg, 2012. · Zbl 1246.35005
[25] S. J. R. Oruganti Shi Shivaji, Diffusive logistic equation with constant yield harvesting. I. Steady states, Trans. Amer. Math. Soc., 354, 3601-3619 (2002) · Zbl 1109.35049 · doi:10.1090/S0002-9947-02-03005-2
[26] M. Schechter, A variation of the mountain pass lemma and applications, J. London Math. Soc., 44, 491-502 (1991) · Zbl 0756.35032 · doi:10.1112/jlms/s2-44.3.491
[27] J. Shi and J. Jiang, Bistability Dynamics in Some Structured Ecological Models, in: S. Cantrell, C. Cosner, S. Ruan (Eds.), Spatial Ecology, Chapman & Hall CRC Press, Boca Raton, FL, 2009, pp. 33-62.
[28] K. Tintarev and K.-H. Fieseler, Concentration Compactness, Imperial College Press, London, 2007. Functional-analytic grounds and applications. · Zbl 1118.49001
[29] C. Truesdell, Sophie Germain: Fame earned by stubborn error, Boll. Storia Sci. Mat., 11, 3-24 (1991) · Zbl 0784.01010
[30] D. I. Uzunov, Introduction to The Theory of Critical Phenomena, World Scientific Publishing Co., Inc., River Edge, NJ, 1993. Mean Field, Fluctuations and Renormalization, With a Foreword by Masuo Suzuki. · Zbl 0875.82001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.