×

Locally finitely presented and coherent hearts. (English) Zbl 1514.18009

Let \((\mathcal{T},\mathcal{F})\) be a torsion pair in a Grothendieck category \(\mathcal{G}\) and \(\mathcal{H}\) the heart of the associated HRS-tilted \(t\)-structure on \(D(\mathcal{G})\). In this paper the authors study finiteness conditions for \(\mathcal{H}\), assuming that the heart is again Grothendieck. By [C. E. Parra and M. Saorín, J. Pure Appl. Algebra 220, No. 6, 2467–2469 (2016; Zbl 1397.18027)] this is equivalent to \((\mathcal{T},\mathcal{F})\) being of finite type. In the present paper it is shown that for torsion pairs finite type is the same as quasi-cotilting, and also cosilting.
The main results are necessary and sufficient criteria for \(\mathcal{H}\) to be locally finitely presented or locally coherent, under various (often technical) assumptions on \(\mathcal{G}\) and \((\mathcal{T},\mathcal{F})\). In particular it is shown that \(\mathcal{H}\) is locally finitely presented if and only if \((\mathcal{T},\mathcal{F})\) is generated by finitely presented objects. The torsion pairs for which \(\mathcal{H}\) is locally coherent are identified as those that restrict to \(\mathrm{fp}(\mathcal{G})\) and satisfy \(\mathcal{F}\cap\mathrm{fp}(\mathcal{G})\subseteq\mathrm{fp}_\infty(\mathcal{G})\). Local coherence of \(\mathcal{H}\) is also considered in relation to local coherence for the heart associated with the restricted torsion pair \((\mathcal{T}\cap\underline{\mathcal{F}},\mathcal{F})\) in the subcategory \(\underline{\mathcal{F}}\) consisting of quotients of objects in \(\mathcal{F}\). Moreover these results are applied to the case that \(\mathcal{G}\) is a module category.

MSC:

18E10 Abelian categories, Grothendieck categories
18G80 Derived categories, triangulated categories
18E40 Torsion theories, radicals

Citations:

Zbl 1397.18027

References:

[1] Alonso, L., Jeremías, A. and Souto, M. J.: Localizations in categories complexes and unboun-ded resolutions. Canad. J. Math. 52 (2000), no. 2, 225-247. · Zbl 0948.18008
[2] Angeleri Hügel, L.: On the abundance of silting modules. In Surveys in representation theory of algebras, pp. 1-23. Contemp. Math. 716, Amer. Math. Soc., Providence, RI, 2018. · Zbl 1422.16009
[3] Assem, I., Simson, D. and Skowronski, A.: Elements of the representation theory of associative algebras. Vol I. Techniques of representation theory. London Mathematical Society Student Texts 65, Cambridge Univ. Press, Cambridge, 2006. · Zbl 1092.16001
[4] Auslander, M.: A survey of existence theorems for almost split sequences. In Representations of algebras (Durham, 1985), pp. 81-90. London Math. Soc. Lecture Note Ser. 116, Cambridge Univ. Press, Cambridge, 1986. · Zbl 0606.16020
[5] Bazzoni, S.: When are definable classes tilting and cotilting classes. J. Algebra 320 (2008), no. 12, 4281-4299. · Zbl 1167.16004
[6] Beilinson, A., Bernstein, J. and Deligne, P.: Faisceaux pervers. In Analyse et topologie sur les espaces singuliers I (Luminy 1981), 5-171. Astérisque 100, Soc. Math. France, Paris, 1982. · Zbl 1390.14055
[7] Bondarko, M. V.: On perfectly generated weight structures and adjacent t-structures. Math. Z. 300 (2022), no. 2, 1421-1454. · Zbl 1483.18017
[8] Bravo, D., Gillespie, J. and Pérez, M. A.: Locally type FP n and n-coherent categories. Preprint 2019, arXiv: 1908.10987.
[9] Bravo, D. and Parra, C. E.: tCG torsion pairs. J. Algebra Appl. 18 (2019), no. 7, article no. 1950127, 15 pp. · Zbl 1428.18013
[10] Bravo, D. and Parra, C. E.: Torsion pairs over n-hereditary rings. Comm. Algebra 47 (2019), no. 5, 1892-1907. · Zbl 1433.18005
[11] Breaz, S. and Pop, F.: Cosilting modules. Algebr. Represent. Theory 20 (2017), no. 5, 1305-1321. · Zbl 1376.16005
[12] Breaz, S. and Zemlicka, J.: Torsion classes generated by silting modules. Ark. Math. 56 (2018), no. 1, 15-32. · Zbl 1414.16026
[13] Chase, S. U.: Direct products of modules. Trans. Amer. Math. Soc. 97 (1960), 457-473. · Zbl 0100.26602
[14] Chase, S. U.: A generalization of the ring of triangular matrices. Nagoya Math. J. 18 (1961), 13-25. · Zbl 0113.02901
[15] Colpi, R.: Tilting in Grothendieck categories. Forum Math. 11 (1999), no. 6, 735-759. · Zbl 0934.18010
[16] Colpi, R. and Gregorio, E.: The heart of a cotilting torsion pair is a Grothendieck category. Unpublished preprint, 2008.
[17] Colpi, R., Gregorio, E. and Mantese, F.: On the heart of a faithful torsion theory. J. Algebra 307 (2007), no. 2, 841-863. · Zbl 1120.18008
[18] Čoupek, P. and Št’ovíček, J.: Cotilting sheaves on noetherian schemes. Math. Z. 296 (2020), no. 1-2, 275-312. · Zbl 1446.18006
[19] Crawley-Boevey, W.: Locally finitely presented additive categories. Comm. Algebra 22 (1994), no. 5, 1641-1674. · Zbl 0798.18006
[20] Estrada, S. and Gillespie, J.: Notes on absolutely clean quasi-coherent sheaves. Private com-munication, 2020.
[21] Garkusha, G.: Classifying finite localizations of quasi-coherent sheaves. St. Petersburg Math. J. 21 (2010), no. 3, 433-458. · Zbl 1211.14008
[22] Groth, M.: Derivators, pointed derivators and stable derivators. Algebr. Geom. Topol. 13 (2013), no. 1, 313-374. · Zbl 1266.55009
[23] Grothendieck, A.: Sur quelques points d’algèbre homologique. Tohoku Math. J. (2) 9 (1957), no. 2, 119-221. · Zbl 0118.26104
[24] Happel, D., Reiten, I. and Smalø, S. O.: Tilting in Abelian categories and quasitilted algebras. Mem. Amer. Math. Soc. 120 (1996), no. 575, viii+ 88 pp. · Zbl 0849.16011
[25] Hoshino, M., Kato, Y. and Miyachi, J. I.: On t -structures and torsion theories induced by com-pact objects. J. Pure Appl. Algebra 167 (2002), no. 1, 15-35. · Zbl 1006.18011
[26] Jensen, C. U. and Lenzing, H.: Model theoretic algebra with particular emphasis on fields, rings, modules. Algebra, Logic and Appls. 2, Gordon & Breach Science Publish., NY, 1989. · Zbl 0728.03026
[27] Krause, H.: Smashing subcategories and the telescope conjecture: an algebraic approach. Invent. Math. 139 (2000), no. 1, 99-133. · Zbl 0937.18013
[28] Krause, H.: Coherent functors in stable homotopy theory. Fund. Math. 173 (2002), no. 1, 33-56. · Zbl 1001.55022
[29] Krause, H.: Krull-Schmidt categories and projective covers. Expo. Math. 33 (2015), no. 4, 535-549. · Zbl 1353.18011
[30] Laking, R.: Purity in compactly generated derivators and t -structures with Grothendieck hearts. Math. Z. 295 (2020), no. 3-4, 1615-1641. · Zbl 1440.18022
[31] Laking, R. and Vitoria, J.: Definability and approximations in triangulated categories. Pacific J. Math. 306 (2020), no. 2, 557-586. · Zbl 1440.18008
[32] Lazard, D.: Autour de la platitude. Bull. Soc. Math. France 97 (1969), 81-128. · Zbl 0174.33301
[33] Lenzing, H.: Hereditary categories. In Handbook of tilting theory, pp. 105-146. London Math. Soc. Lect. Not. Ser. 332, Cambridge Univ. Press, Cambridge, 2007. · Zbl 1106.16300
[34] Lurie, J.: Higher algebra. Notes, 2017, httpW//www.math.harvard.edu/ lurie/papers/HA.pdf.
[35] Mac Lane, S.: Homology. Springer Science & Business Media, 2012.
[36] Neeman, A.: Triangulated categories. Annals of Mathematics Studies 148, Princeton Univer-sity Press, Princeton, NJ, 2001. · Zbl 0974.18008
[37] Nicolás, P., Saorín, M. and Zvonareva, A.: Silting theory in triangulated categories with cop-roducts. J. Pure Appl. Algebra 223 (2019), no. 6, 2273-2319. · Zbl 1436.18013
[38] Parra, C. E. and Saorín, M.: Direct limits in the heart of a t -structure: the case of a torsion pair. J. Pure Appl. Algebra 219 (2015), no. 9, 4117-4143. · Zbl 1333.18017
[39] Parra, C. E. and Saorín, M.: Addendum to “Direct limits in the heart of a t -structure: the case of a torsion pair” [J. Pure and Appl. Algebra 219 (9) (2015), 4117-4143]. · Zbl 1333.18017
[40] J. Pure Appl. Algebra 220 (2016), no. 5, 2467-2469. · Zbl 1397.18027
[41] Parra, C. E. and Saorín, M.: Hearts of t-structures in the derived category of a commutative Noetherian ring. Trans. Amer. Math. Soc. 369 (2017), no. 11, 7789-7827. · Zbl 1390.18026
[42] Parra, C. E. and Saorín, M.: The HRS tilting process and Grothendieck hearts of t -structures. In Representations of algebras, geometry and physics, pp. 209-241. Contemp. Math. 769, American Mathematical Society, Providence, RI, 2021. · Zbl 1497.18010
[43] Parra, C. E., Saorín, M. and Virili, S.: Torsion pairs in categories of modules over a preadditive category. Bull. Iran. Math. Soc. 47 (2021), no. 4, 1135-1171. · Zbl 1467.13023
[44] Parra, C. E., Saorín, M. and Virili, S.: Tilting preenvelopes and cotilting precovers in general Abelian categories. To appear in Algebr. Represent. Theory. DOI: 10.1007/s10468-022-10126-5. · Zbl 1525.18011 · doi:10.1007/s10468-022-10126-5
[45] Polishchuk, A.: Constant families of t-structures on derived categories of coherent sheaves. Mosc. Math. J. 7 (2007), no. 1, 109-134. · Zbl 1126.14021
[46] Porta, M.: The Popescu-Gabriel theorem for triangulated categories. Adv. Math. 225 (2010), no. 3, 1669-1715. · Zbl 1227.18011
[47] Prest, M.: Purity, spectra and localisation. Encyclopedia of Mathematics and its Applica-tions 121. Cambridge University Press, Cambridge, 2009. · Zbl 1205.16002
[48] Psaroudakis, C. and Vítoria, J.: Realisation functors in tilting theory. Math. Z. 288 (2018), no. 3-4, 965-1028. · Zbl 1407.18014
[49] Ringel, C. M.: Tame algebras and integral quadratic forms. Lecture Notes in Mathemat-ics 1099, Springer-Verlag, Berlin, 1984. · Zbl 0546.16013
[50] Rotman, J. J.: An introduction to homological algebra. First edition. Pure and Applied Math-ematics 85, Academic Press, New York-London, 1979. · Zbl 0441.18018
[51] Saorín, M.: Locally coherent hearts. Pacific J. Math. 287 (2017), no. 1, 199-221. · Zbl 1360.18017
[52] Saorín, M. and Stovicek, J.: t -Structures with Grothendieck hearts via functor categories. Pre-print 2020, arXiv: 1708.07540.
[53] Saorín, M., Stovicek, J. and Virili, S.: t -structures on stable derivators and Grothendieck hearts. Preprint 2018, arXiv: 1708.07540.
[54] Stenström, B.: Rings of quotients. Springer-Verlag, 1975. · Zbl 0296.16001
[55] Zhang, P. and Wei, J.: Cosilting complexes and AIR-cotilting modules. J. Algebra 491 (2017), 1-31. · Zbl 1406.16004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.