×

Counting Higgs bundles and type \(A\) quiver bundles. (English) Zbl 1514.14011

Summary: We prove a closed formula counting semistable twisted (or meromorphic) Higgs bundles of fixed rank and degree over a smooth projective curve of genus \(g\) defined over a finite field, when the twisting line bundle degree is at least \(2g-2\) (this includes the case of usual Higgs bundles). This yields a closed expression for the Donaldson-Thomas invariants of the moduli spaces of twisted Higgs bundles. We similarly deal with twisted quiver sheaves of type \(A\) (finite or affine), obtaining in particular a Harder-Narasimhan-type formula counting semistable \(U(p,q)\)-Higgs bundles over a smooth projective curve defined over a finite field.

MSC:

14D20 Algebraic moduli problems, moduli of vector bundles
16G20 Representations of quivers and partially ordered sets
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)

References:

[1] Chaudouard, P.-H., Sur le comptage des fibrés de Hitchin, Astérisque369 (2015), 223-284. · Zbl 1349.14044
[2] Chaudouard, P.-H. and Laumon, G., Sur le comptage des fibrés de Hitchin nilpotents, J. Inst. Math. Jussieu15 (2016), 91-164. · Zbl 1401.14059
[3] Chuang, W.-Y., Diaconescu, D.-E. and Pan, G., Wallcrossing and cohomology of the moduli space of Hitchin pairs, Commun. Number Theory Phys.5 (2011), 1-56. · Zbl 1259.14009
[4] García-Prada, O. and Heinloth, J., The y-genus of the moduli space of PGL_n-Higgs bundles on a curve (for degree coprime to n), Duke Math. J.162 (2013), 2731-2749. · Zbl 1300.14013
[5] García-Prada, O., Heinloth, J. and Schmitt, A., On the motives of moduli of chains and Higgs bundles, J. Eur. Math. Soc. (JEMS)16 (2014), 2617-2668. · Zbl 1316.14060
[6] Gothen, P. B., The Betti numbers of the moduli space of stable rank 3 Higgs bundles on a Riemann surface, Internat. J. Math.5 (1994), 861-875. · Zbl 0860.14030
[7] Gothen, P. B., Hitchin pairs for non-compact real Lie groups, Trav. Math.24 (2016), 183-200. Special issue based on School GEOQUANT at the ICMAT Madrid, Spain, September 2015. · Zbl 1369.14041
[8] Gothen, P. B. and King, A. D., Homological algebra of twisted quiver bundles, J. Lond. Math. Soc. (2)71 (2005), 85-99. · Zbl 1095.14012
[9] Hausel, T., Mirror symmetry and Langlands duality in the non-abelian Hodge theory of a curve, in Geometric methods in algebra and number theory, (Birkhäuser, Boston, MA, 2005), 193-217. · Zbl 1099.14026
[10] Hausel, T. and Rodriguez-Villegas, F., Mixed Hodge polynomials of character varieties, Invent. Math.174 (2008), 555-624; with an appendix by Nicholas M. Katz. · Zbl 1213.14020
[11] Hitchin, N. J., The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc. (3)55 (1987), 59-126. · Zbl 0634.53045
[12] Laumon, G. and Rapoport, M., The Langlands lemma and the Betti numbers of stacks of G-bundles on a curve, Internat. J. Math.7 (1996), 29-45. · Zbl 0871.14028
[13] Macdonald, I. G., Symmetric functions and Hall polynomials, , second edition (Clarendon Press, Oxford, 1995); with contributions by A. Zelevinsky. · Zbl 0824.05059
[14] Mellit, A., Poincaré polynomials of moduli spaces of Higgs bundles and character varieties (no punctures), Invent. Math., to appear. Preprint (2017), arXiv:1707.04214. · Zbl 1455.14022
[15] Mozgovoy, S., A computational criterion for the Kac conjecture, J. Algebra318 (2007), 669-679. · Zbl 1152.16014
[16] Mozgovoy, S., Poincaré polynomials of moduli spaces of stable bundles over curves, Manuscripta Math.131 (2010), 63-86. · Zbl 1194.14053
[17] Mozgovoy, S., Motivic Donaldson-Thomas invariants and McKay correspondence, Preprint (2011), arXiv:1107.6044.
[18] Mozgovoy, S., Solutions of the motivic ADHM recursion formula, Int. Math. Res. Not. IMRN2012 (2012), 4218-4244. · Zbl 1262.14015
[19] Mozgovoy, S. and Reineke, M., Moduli spaces of stable pairs and non-abelian zeta functions of curves via wall-crossing, J. Éc. Polytech. Math.1 (2014), 117-146. · Zbl 1311.14036
[20] Reineke, M., The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math.152 (2003), 349-368. · Zbl 1043.17010
[21] Reineke, M., Counting rational points of quiver moduli, Int. Math. Res. Not. IMRN2006 (2006), 70456. · Zbl 1113.14018
[22] Schiffmann, O., Lectures on Hall algebras, in Geometric methods in representation theory. II, (Société Mathématique de France, Paris, 2012). · Zbl 1309.18012
[23] Schiffmann, O., Indecomposable vector bundles and stable Higgs bundles over smooth projective curves, Ann. of Math. (2)183 (2016), 297-362. · Zbl 1342.14076
[24] Zagier, D., Elementary aspects of the Verlinde formula and of the Harder-Narasimhan-Atiyah-Bott formula, in Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan), (Bar-Ilan University, 1996), 445-462. · Zbl 0854.14020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.