×

Dengue model with early-life stage of vectors and age-structure within host. (English) Zbl 1513.93043

Summary: We construct an epidemic model for the transmission of dengue fever with an early-life stage in the vector dynamics and age-structure within hosts. The early-life stage of the vector is modeled via a general function that supports multiple vector densities. The basic reproductive number and vector demographic threshold are computed to study the local and global stability of the infection-free state. A numerical framework is implemented and simulations are performed.

MSC:

93D20 Asymptotic stability in control theory
35Q92 PDEs in connection with biology, chemistry and other natural sciences

References:

[1] F. Brauer, C. Castillo-Chavez, A. Mubayi, S. Towers, Some models for epidemics of vector-transmitted diseases, Infect. Dis. Model. 1(2016), no. 1, 79-87. doi: 10.1016/j.idm.2016.08.001 · doi:10.1016/j.idm.2016.08.001
[2] Centers for Disease Control and Prevention, Dengue, https://www. cdc.gov/Dengue/
[3] L. Esteva, C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci. 150 (1998), no. 2, 131-151. doi: 10.1016/ S0025-5564(98)10003-2 · Zbl 0930.92020
[4] L. Esteva, C. Vargas, A model for dengue disease with variable human population, J. Math. Biol. 38(1999), no. 3, 220-240. doi: 10.1007/ s002850050147 · Zbl 0981.92016
[5] Z. Feng, J.X. Velasco-Hernández, Competitive exclusion in a vector-host model for the dengue fever, J. Math. Biol. 35(1997), no. 5, 523-544. doi: 10.1007/s002850050064 · Zbl 0878.92025 · doi:10.1007/s002850050064
[6] D.J. Gubler, Resurgent vector-borne diseases as a global health prob-lem, Emerging Infect. Dis. 4(1998), no. 3, 442-450. doi: 10.3201/ eid0403.980326
[7] E. Harris, E. Videa, L. Pérez, E. Sandoval, Y. Téllez, M.L. Pérez, R. Cuadra, J. Rocha, W. Idiaquez, R.E. Alonso, M.A. Delgado, L.A. Campo, F. Acevedo, A. Gonzalez, J.J. Amador, A. Balmaseda, Clinical, epidemio-logic, and virologic features of dengue in the 1998 epidemic in Nicaragua, Am. J. Trop. Med. Hyg. 63(2000), no. 1-2, 5-11. doi: 10.4269/ajtmh. 2000.63.5 · doi:10.4269/ajtmh.2000.63.5
[8] C.A. Manore, K.S. Hickmann, S. Xu, H.J. Wearing, J.M. Hyman, Compar-ing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus, J. Theor. Biol. 356(2014), 174-191. doi: 10. 1016/j.jtbi.2014.04.033 · Zbl 1412.92292
[9] D. Murillo, S. Holechek, A. Murillo, F. Sanchez, C. Castillo-Chavez, Verti-cal transmission in a two-strain model of dengue fever, Letters in Biomath-ematics 1(2014), no. 2, 249-271. doi: 10.1080/23737867.2014. 11414484 · doi:10.1080/23737867.2014.11414484
[10] F. Sanchez, L. Barboza, D. Burton, A. Cintrón-Arias, Comparative anal-ysis of dengue versus chikungunya outbreaks in Costa Rica, Journal Ricerche di Matematica 67(2018), no. 1, 163-174. doi: 10.1007/ s11587-018-0362-3 · Zbl 1395.92164
[11] F. Sanchez, M. Engman, L. Harrington, C. Castillo-Chavez, Models for dengue transmission and control, in: A. Gumel, C. Castillo-Chavez, D.P. Clemence, & R.E. Mickens (Eds.) Mathematical studies on human dis-ease dynamics. Emerging paradigms and challenges (Snowbird, Utah, 2005), Contemp. Math. 410(2006), 311-326. doi: 10.1090/conm/ 410/07734 · Zbl 1152.92334 · doi:10.1090/conm/410/07734
[12] F. Sanchez, D. Murillo, C. Castillo-Chavez, Change in host behavior and its impact on the transmission dynamics of dengue, in: R.P. Mondani (Ed.) BIOMAT 2011, World Scientific, Singapore, 2012, pp. 191-203. doi: 10. 1142/9789814397711_0013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.