×

Generalized singular integral with rough kernel and approximation of surface quasi-geostrophic equation. (English) Zbl 1513.76039

Summary: This paper is concerned with the generalized singular integral operator with rough kernel and the approximation problem for the generalized surface quasi-geostrophic equation. For the generalized singular integral operator, we obtain uniform \(L^p - L^q\) estimates with respect to a parameter \(\beta \). From this one can cover the \(L^p\)-boundedness of the Calderón-Zygmund operator with rough kernel by letting \(\beta \to 0\). We applied this estimate to study the Cauchy problem of the generalized surface quasi-geostrophic (SQG) equation. Local well-posedness in the Besov space \(B_{p, q}^s\) and some limit behaviour of the solutions are obtained. Our results improve the previous ones by H. Yu et al. [Arch. Ration. Mech. Anal. 232, No. 1, 265–301 (2019; Zbl 1410.35148)] in 2019 and by H. Yu et al. [J. Funct. Anal. 280, No. 5, Article ID 108887, 23 p. (2021; Zbl 1454.42012)] in 2021.

MSC:

76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI

References:

[1] Bahouri, H.; Chemin, J-Y.; Danchin, R., Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, vol. 343 (2011), Springer: Springer Heidelberg · Zbl 1227.35004
[2] Bony, J.-M., Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. Éc. Norm. Supér., 14, 209-246 (1981) · Zbl 0495.35024
[3] Bourgain, J.; Li, D., Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces, Invent. Math., 201, 97-157 (2015) · Zbl 1320.35266
[4] Bourgain, J.; Li, D., Strong illposedness of the incompressible Euler equation in integer \(C^m\) spaces, Geom. Funct. Anal., 25, 1-86 (2015) · Zbl 1480.35316
[5] Calderón, A. P.; Zygmund, A., On the existence of certain singular integrals, Acta Math., 88, 85-139 (1952) · Zbl 0047.10201
[6] Caffarelli, L.; Vasseur, A., Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. Math., 171, 3, 1903-1930 (2010) · Zbl 1204.35063
[7] Chen, Y.; Guo, Z., An extension of Calderón-Zygmund type singular integral with non-smooth kernel, J. Funct. Anal., 281, Article 109196 pp. (2021) · Zbl 1479.42035
[8] Chen, Q.; Miao, C.; Zhang, Z., A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic equation, Commun. Math. Phys., 271, 821-838 (2014) · Zbl 1142.35069
[9] Constantin, P.; Iyer, G.; Wu, J., Global regularity for a modified critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J., 57, 2681-2692 (2008) · Zbl 1159.35059
[10] Constantin, P.; Majda, A.; Tabak, E., Formation of Strong fronts in the 2D quasi-geostrophic thermal active scalar, Nonlinearity, 7, 1495-1533 (1994) · Zbl 0809.35057
[11] Constantin, P.; Vicol, V., Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geom. Funct. Anal., 22, 1289-1321 (2012) · Zbl 1256.35078
[12] Constantin, P.; Tarfulea, A.; Vicol, V., Long time dynamics of forced critical SQG, Commun. Math. Phys., 335, 93-141 (2015) · Zbl 1316.35238
[13] Córdoba, D., Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation, Ann. Math., 148, 1135-1152 (1998) · Zbl 0920.35109
[14] Córdoba, D.; Fefferman, C., Growth of solutions for QG and 2D Euler equations, J. Am. Math. Soc., 15, 665-670 (2002) · Zbl 1013.76011
[15] Dabkowski, M.; Kiselev, A.; Silvestre, L.; Vicol, V., Global well-posedness of slightly supercritical active scalar equations, Anal. PDE, 7, 43-72 (2014) · Zbl 1294.35092
[16] Gancedo, F.; Patel, N., On the local existence and blow-up for generalized SQG patches, Ann. PDE, 7, 4 (2021) · Zbl 1473.35473
[17] Guo, Z.; Li, K., Remarks on the well-posedness of the Euler equations in the Triebel-Lizorkin spaces, J. Fourier Anal. Appl., 27, 29 (2021) · Zbl 1464.35199
[18] Ju, N., Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space, Commun. Math. Phys., 251, 365-376 (2004) · Zbl 1106.35061
[19] Kato, T.; Ponce, G., Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41, 891-907 (1988) · Zbl 0671.35066
[20] Kiselev, A.; Yao, Y.; Zlatoš, A., Local regularity for the modified SQG patch equation, Commun. Pure Appl. Math., 70, 1253-1315 (2017) · Zbl 1371.35220
[21] Kiselev, A.; Ryzhik, L.; Yao, Y.; Zlatoš, A., Finite time singularity for the modified SQG patch equation, Ann. Math., 184, 3, 909-948 (2016) · Zbl 1360.35159
[22] Kiselev, A.; Nazarov, F., A variation on a theme of Caffarelli and Vasseur, Zap. Nauč. Semin. POMI, 370, 58-72 (2010) · Zbl 1288.35393
[23] Kiselev, A.; Nazarov, F.; Volberg, A., Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167, 445-453 (2007) · Zbl 1121.35115
[24] Pedlosky, J., Geophysical Fluid Dynamics (1987), Springer: Springer New York · Zbl 0713.76005
[25] Pierrehumbert, R. T.; Held, I. M.; Swanson, K. L., Spectra of local and nonlocal two-dimensional turbulence, Chaos Solitons Fractals, 4, 1111-1116 (1994) · Zbl 0823.76034
[26] Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30 (1970), Princeton University Press: Princeton University Press Princeton, N.J. · Zbl 0207.13501
[27] Stein, E. M., Harmonic Analysis, Real Variable Methods, Orthogonality, and Oscillatory Integrals (1993), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0821.42001
[28] Yu, H.; Jiu, Q.; Li, D., An extension of Calderón-Zygmund type singular integral, J. Funct. Anal., 280, Article 108887 pp. (2021) · Zbl 1454.42012
[29] Yu, H.; Zheng, X.; Jiu, Q., Remarks on well-posedness of the generalized surface quasi-geostrophic equation, Arch. Ration. Mech. Anal., 232, 1, 265-301 (2019) · Zbl 1410.35148
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.