×

Hybrid proximal point algorithm for solving split equilibrium problems and its applications. (English) Zbl 1513.47129

Summary: This paper deals with split equilibrium problems in Banach spaces. The presented algorithm is based on the hybrid algorithm and the proximal point algorithm and has been used for finding the solution of split equilibrium problems. Under some standard assumptions on equilibrium bifunctions, it is proven that the generated sequences by the presented scheme are strongly convergent. Finally, the efficiency of the proposed method is demonstrated through some examples. Also, comparative results verify that the proposed method is more effective than the other existing methods in the literature. Furthermore, an application of the presented algorithm in Hilbert spaces and an application of our method to solve the \(LASSO\) problem in the field of compressed sensing are given.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
65K10 Numerical optimization and variational techniques
65K15 Numerical methods for variational inequalities and related problems
Full Text: DOI

References:

[1] S. Alizadeh and F. Moradlou, Strong convergence theorems for m-generalized hybrid mappings in Hilbert spaces, Topol. Methods Nonlinear Anal. 46, 315-328, 2015. · Zbl 1460.47038
[2] S. Alizadeh and F. Moradlou, A strong convergence theorem for equilibrium problems and generalized hybrid mappings, Mediterr. J. Math. 13, 379-390, 2016. · Zbl 1336.47061
[3] A.S. Antipin, The convergence of proximal methods to fixed points of extremal mappings and estimates of their rate of convergence, Comput. Math. Math. Phys. 35, 539-551, 1995. · Zbl 0852.65046
[4] E. Blum and W. Oettli, From Optimization and variational inequalities to equilibrium problems, Math. Stud. 63, 123-145, 1994. · Zbl 0888.49007
[5] A. Cegielski, Iterative methods for fixed point problems in Hilbert spaces, Lecture Notes in Mathematics, Vol. 2057, Springer, 2012. · Zbl 1256.47043
[6] Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms 59, 301-323, 2012. · Zbl 1239.65041
[7] C. Chidume, Geometric properties of Banach spaces and nonlinear iterations, in: Lecture Notes in Mathematics, vol. 1965, Springer, Berlin, 2009. · Zbl 1167.47002
[8] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer, Dordrecht, 1990. · Zbl 0712.47043
[9] P.L. Combettes and S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6, 117-136, 2005. · Zbl 1109.90079
[10] J. Contreras, M. Klusch and J.B. Krawczyk, Numerical solution to Nash-Cournot equilibria in coupled constraint electricity markets, EEE Trans. Power. Syst. 19, 195- 206, 2004.
[11] J. Deepho, W. Kumm and P. Kumm, A new hybrid projection algorithm for solving the split generalized equilibrium problems and the system of variational inequality problems, J. Math. Model. Algorithms 13, 405-423, 2014. · Zbl 1305.65164
[12] B.V. Dinh, D.X. Son and T.V. Anh, Extragradient-Proximal Methods for Split Equilibrium and Fixed Point Problems in Hilbert Spaces, Vietnam J. Math. 45, 651-668, 2015. · Zbl 06807624
[13] F. Facchinei and J.S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer, Berlin, 2002. · Zbl 1062.90001
[14] Z. He, The split equilibrium problem and its convergence algorithms, J. Inequal. Appl. 162, 2012. · Zbl 1291.47054
[15] D.V. Hieu, Parallel Extragradient-Proximal Methods for Split Equilibrium Problems, Math. Model. Anal. 21, 478-501, 2016. · Zbl 1488.90214
[16] D.V. Hieu, Two hybrid algorithms for solving split equilibrium problems, Int. J. Comput. Math. 95, 561-583, 2018. · Zbl 1390.90533
[17] D.V. Hieu, Projection methods for solving split equilibrium problems, J. Ind. Manag. Optim. 16, 2331-2349, 2020. · Zbl 1476.65111
[18] D.V. Hieu, L.D. Muu and P. K. Anh, Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings, Numer. Algorithms 73, 197-217, 2016. · Zbl 1367.65089
[19] Z. Jouymandi and F. Moradlou, Extragradient methods for solving equilibrium problems, variational inequalities and fixed point problems, Numer. Funct. Anal. Optim. 38, 1391-1409, 2017. · Zbl 1491.47064
[20] Z. Jouymandi and F. Moradlou, Retraction algorithms for solving variational inequalities, pseudomonotone equilibrium problems and fixed point problems in Banach spaces, Numer. Algorithms 78, 1153-1182, 2018. · Zbl 1394.65042
[21] Z. Jouymandi and F. Moradlou, Extragradient and linesearch algorithms for solving equilibrium problems, variational inequalities and fixed point problems in Banach spaces, Fixed Point Theory 20, 523-540, 2019. · Zbl 1450.65057
[22] G. Kassay, T.N. Hai and N.T. Vinh, Coupling Popov’s algorithm with subgradient extragradient method for solving equilibrium problems, J. Nonlinear Convex Anal. 19, 959-986, 2018. · Zbl 1503.47092
[23] D.S. Kim and B.V. Dinh, Parallel extragradient algorithms for multiple set split equilibrium problems in Hilbert spaces, Numer. Algorithms 77, 741-761, 2018. · Zbl 1436.65077
[24] D. Kinderlehrar and D. Stampacchia, An introduction to variational inequality and their application, Academic Press, New York, 1980. · Zbl 0457.35001
[25] S.I. Lyashko and V.V. Semenov, A new two-step proximal algorithm of solving the problem of equilibrium programming, in: Optimization and Applications in Control and Data Sciences 115, 315-326, Springer, 2016. · Zbl 1354.90172
[26] Y. Malitsky, Projected reflected gradient methods for monotone variational inequalities, SIAM J. Optim. 25, 502-520, 2015. · Zbl 1314.47099
[27] B. Martinet, Régularisation d′inéquations variationnelles par approximations successives, Rev Française Informat Recherche Opérationnelle 4, 154-158, 1970. · Zbl 0215.21103
[28] S. Matsushita and L. Xu, On convergence of the proximal point algorithm in Banach spaces, Proc. Amer. Math. Soc. 139, 4087-4095, 2011. · Zbl 1232.65082
[29] S. Matsushita and W. Takahashi, Weak and strong convergence theorems for relatively nonexpansive mappings in Banach spaces, Fixed Point Theory Appl. 2004 37-47, 2004. · Zbl 1088.47054
[30] S. Matsushita and W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory 134, 257-266, 2005. · Zbl 1071.47063
[31] A. Moudafi, The split common fixed-point problem for demicontractive mappings, Inverse Problems 26, (Article ID 055007), 2010 . · Zbl 1219.90185
[32] A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl. 150, 275- 283, 2011. · Zbl 1231.90358
[33] L.D. Muu and W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal. 18, 1159-1166, 1992. · Zbl 0773.90092
[34] T.D. Quoc, P. N. Anh and L. D. Muu, Dual extragradient algorithms to equilibrium Problems, J. Glob. Optim. 52, 139-159, 2012. · Zbl 1258.90088
[35] T.D. Quoc, L.D. Muu and V.H. Nguyen, Extragradient algorithms extended to equilibrium problems, Optimization 57, 749-776, 2008. · Zbl 1152.90564
[36] S. Reich, A weak convergence theorem for the alternating method with Bregman distance, in: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York, 1996.
[37] S. Reich and S. Sabach, A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal. 10, 471-485, 2009. · Zbl 1180.47046
[38] R.T. Rockafellar, Maximal monotone operators and proximal point algorithm, SIAM J. Control Optim. 14, 877-898, 1976. · Zbl 0358.90053
[39] M. Safari and F. Moradlou, Shrinking hybrid method for multiple-sets split feasibility problems and variational inequality problems, Ric. Mat., accepted, doi:10.1007/s11587-021-00676-z. · Zbl 07906432
[40] D. Sahu, D. O’Regan and R. P. Agarwal, Fixed point theory for Lipschitzian-type mappings with Applications, Springer, New York, 2009. · Zbl 1176.47037
[41] F. Sch¨opfer, T. Schuster and A. K. Louis, An iterative regularization method for the solution of the split feasibility problem in Banach spaces, Inverse Problems 24, (Article ID 055008), 2008. · Zbl 1153.46308
[42] J.J. Strodiot, P.T. Vuong and N.T.T. Van, A class of shrinking projection extragradient methods for solving non-monotone equilibrium problems in Hilbert spaces, J. Global Optim. 64, 159-178, 2016. · Zbl 1357.90160
[43] S. Takahashi and W. Takahashi, Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal. 69, 1025-1033, 2008. · Zbl 1142.47350
[44] R. Tibshirani, Regression shrinkage and selection via LASSO, J. R. Stat. Soc. Ser. B. Stat. Methodol. 58, 267-288, 1996. · Zbl 0850.62538
[45] S. Wang, X. Gong, A.N. Abdou and Y.J. Cho, Iterative algorithm for a family of split equilibrium problems and fixed point problems in Hilbert spaces with applications, Fixed Point Theory Appl. 2016, 1-22, 2016. · Zbl 1346.47068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.