×

Monotone iterative method for a class of nonlinear fractional differential equations on unbounded domains in Banach spaces. (English) Zbl 1513.45036

Summary: In this paper, we investigate the existence of minimal nonnegative solution for a class of nonlinear fractional integro-differential equations on semi-infinite intervals in Banach spaces by applying the cone theory and the monotone iterative technique. An example is given for the illustration of main results.

MSC:

45L05 Theoretical approximation of solutions to integral equations
26A33 Fractional derivatives and integrals
45N05 Abstract integral equations, integral equations in abstract spaces
45J05 Integro-ordinary differential equations
Full Text: DOI

References:

[1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. · Zbl 1092.45003
[2] J. Sabatier, O. P. Agrawal, J. A. T. Machado (Eds.), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007. · Zbl 1116.00014
[3] V. Lakshmikantham, S. Leela, J. V. Devi, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009. · Zbl 1188.37002
[4] G. Wang, B. Ahmad, L. Zhang, Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order, Nonlinear Anal., 74 (2011) 792-804. · Zbl 1214.34009
[5] B. Ahmad, S. K. Ntouyas, A. Alsaedi, New existence results for nonlinear fractional differential equations with three-point integral boundary conditions, Adv. Differ. Equ-NY, 2011, Article ID 107384, 11 pages. · Zbl 1204.34005
[6] B. Ahmad, J. J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl. 58 (2009), 1838-1843. · Zbl 1205.34003
[7] B. Ahmad, J. J. Nieto, A. Alsaedi, M. El-Shahed. A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal. Real World Appl. 13 (2012) 599-606. · Zbl 1238.34008
[8] L. Zhang, B. Ahmad, G. Wang, R. P. Agarwal, Nonlinear fractional integro-differential equations on unbounded domains in a Banach space, J. Comput. Appl. Math., 249 (2013), 51-56. · Zbl 1302.45019
[9] R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal. 72 (2010), 2859-2862. · Zbl 1188.34005
[10] D. Baleanu, R. P. Agarwal, O. G. Mustafa, M. Cosulschi, Asymptotic integration of some nonlinear differential equations with fractional time derivative, J. Phys. A 44 (2011) Art. ID 055203. · Zbl 1238.26008
[11] S. R. Grace, R. P. Agarwal, P. J. Y. Wong, A. Zafer, On the oscillation of fractional differential equations, Fractional Calculus and Applied Analysis, 15 (2012) 222-231. · Zbl 1273.34007
[12] L. Zhang, B. Ahmad, G. Wang, Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a half-line, Bull. Aust. Math. Soc. 91 (2015) 116-128. · Zbl 1314.34028
[13] G. Wang, B. Ahmad, L. Zhang, J. J. Nieto, Comments on the concept of existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simulat. 19 (2014) 401-403. · Zbl 1470.34031
[14] Z. Bai, H. Lv, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005) 495-505. · Zbl 1079.34048
[15] W. Jiang, Solvability for a coupled system of fractional differential equations at resonance, Nonlinear Anal. Real World Appl. 13 (2012) 2285-2292. · Zbl 1257.34005
[16] G. Wang, Monotone iterative technique for boundary value problems of a nonlinear fractional differential equations with deviating arguments, J. Comput. Appl. Math., 236 (2012), 2425-2430. · Zbl 1238.65077
[17] G. Wang, R. P. Agarwal, A. Cabada, Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations, Appl. Math. Lett., 25 (2012), 1019-1024. · Zbl 1244.34008
[18] G. Wang, D. Baleanu, L. Zhang, Monotone iterative method for a class of nonlinear fractional differential equations, Fract. Calc. Appl. Anal., 15 (2012), 244-252. · Zbl 1273.34021
[19] G. Wang, S. Liu, L. Zhang, Neutral fractional integro-differential equation with nonlinear term depending on lower order derivative, J. Comput. Appl. Math., 260 (2014), 167-172. · Zbl 1293.45005
[20] S. Liu, G. Wang, L. Zhang, Existence results for a coupled system of nonlinear neutral fractional differential equations, Appl. Math. Lett., 26 (2013), 1120-1124. · Zbl 1308.34103
[21] L. Zhang, B. Ahmad, G. Wang, The existence of an extremal solution to a nonlinear system with the right-handed RiemannLiouville fractional derivative, Appl. Math. Lett., 31 (2014), 1-6. · Zbl 1315.34016
[22] L. Lin, X. Liu, H. Fang, Method of upper and lower solutions for fractional differential equations, Electronic. J. Differential Equations, 2012 (2012), 1-13. · Zbl 1260.34026
[23] F. A. McRae, Monotone iterative technique and existence results for fractional differential equations, Nonlinear Anal., 71(2009), 6093-6096. · Zbl 1260.34014
[24] J. D. Ramirez, A. S. Vatsala, Monotone iterative technique for fractional differential equations with periodic boundary boundary conditions, Opuscula Math., 29(2009), 289-304. · Zbl 1197.26007
[25] Z. Wei, G. Li, J. Che, Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative, J. Math. Anal. Appl., 367(2010), 260-272. · Zbl 1191.34008
[26] S. Zhang, Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives, Nonlinear Anal., 71(2009), 2087-2093. · Zbl 1172.26307
[27] S. Zhang, X. Su, The existence of a solution for a frational differential equation with nonlinear boundary conditions considered using upper and lower solutions in reversed order, Compu. Math. Appl. 62 (2011) 1269-1274. · Zbl 1228.34022
[28] M. Al-Refai, M. A. Hajji, Monotone iterative sequences for nonlinear boundary value problems of fractional order, Nonlinear Anal. 74 (2011) 3531-3539. · Zbl 1219.34005
[29] T. Jankowski, Fractional differential equations with deviating arguments, Dynam. Systems Appl., 17 (2008), 677-684. · Zbl 1202.34017
[30] T. Jankowski, Fractional equations of Volterra type involving a Riemann-Liouville derivative, Appl. Math. Lett., to appear. · Zbl 1259.45007
[31] J. Mu, Monotone Iterative Technique for Fractional Evolution Equations in Banach Spaces, Journal of Applied Mathematics Volume 2011, Article ID 767186, 13 pages. · Zbl 1226.35084
[32] R. P. Agarwal, D. O’Regan, Infinite Interval Problems for Differential, Difference and Integral Equations, Kluwer Academic Publisher, Netherlands, 2001. · Zbl 0988.34002
[33] P. W. Eloe, E. R. Kaufmann, C. C. Tisdell, Multiple solutions of a boundary value problem on an unbounded domain, Dyn. Syst. Appl. 15 (2006) 53-63. · Zbl 1108.34024
[34] J. M. Gomes, L. Sanchez, A variational approach to some boundary value problems in the half-line, Z. Angew. Math. Phys. 56 (2005) 192-209. · Zbl 1073.34026
[35] G. Sh. Guseinov, I. Yaslan, Boundary value problems for second order nonlinear differential equations on infinite intervals, J. Math. Anal. Appl. 290 (2004) 620-638. · Zbl 1054.34045
[36] H. R. Lian, P. G. Wang, W. G. Ge, Unbounded upper and lower solutions method for Sturm-Liouville boundary value problem L. Zhang, B. Ahmad, G. Wang/Filomat 31:5 (2017), 1331-13381338
[37] D. Guo, Boundary value problems for impulsive integro-differential equations on unbounded domains in a Banach space, Appl. Math. Comput. 99 (1999) 1-15. · Zbl 0929.34058
[38] D. Guo, Second order integro-differential equations of Volterra type on unbounded domains in Banach spaces, Nonlinear Anal. TMA 41 (2000) 465-476. · Zbl 0959.45006
[39] B. Liu, L. Liu, Y. Wu, Unbounded solutions for three-point boundary value problems with nonlinear boundary conditions on [0,+∞), Nonlinear Anal. TMA 73 (2010) 2923-2932. · Zbl 1211.34016
[40] T. Ertem, A. Zafer, Existence of solutions for a class of nonlinear boundary value problems on half-line, Boundary Value Problems 2012 2012:43. · Zbl 1277.34030
[41] A. Arara, M. Benchohra, N. Hamidia, J. J. Nieto, Fractional order differential equations on an unbounded domain, Nonlinear Analysis, 72(2010), 580-586. · Zbl 1179.26015
[42] X. K. Zhao, W. G. Ge, Unbounded solutions for a fractional boundary value problem on the infinite interval, Acta Appl. Math. 109 (2010) 495-505. · Zbl 1193.34008
[43] S. Liang, J. Zhang, Existence of three positive solutions form-point boundary value problems for some nonlinear fractional differential equations on an infinite interval. Comput. Math. Appl. 61 (2011), 3343-3354. · Zbl 1235.34079
[44] X. Su, Solutions to boundary value problem of fractional order on unbounded domains in a Banach space, Nonlinear Analysis 74 (2011) 2844-2852. · Zbl 1250.34007
[45] R. P. Agarwal, M. Benchohra, S. Hamani, S. Pinelas, Boundary value problems for differential equations involving RiemannLiouville fractional derivative on the half-line. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 18 (2011), no. 2, 235-244. · Zbl 1208.26012
[46] S. Liang, J. Zhang, Existence of multiple positive solutions for m-point fractional boundary value problems on an infinite interval, Math. Comput. Modelling 54 (2011) 1334-1346. · Zbl 1235.34023
[47] G. Wang, B. Ahmad, L. Zhang, A Coupled System of Nonlinear Fractional Differential Equations with Multipoint Fractional Boundary Conditions on an Unbounded Domain, Abstr. Appl. Anal. 2012, Art. ID 248709, 11 pp. · Zbl 1242.34010
[48] X. Su, S. Zhang, Unbounded solutions to a boundary value problem of fractional order on the half-line, Comput. Math. Appl. 61 (2011) 1079-1087. · Zbl 1217.34045
[49] Y. Du, Fixed point of increasing operators in ordered Banach spaces and applications, Appl.Anal.38(1990), 1-20 · Zbl 0671.47054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.