×

Existence of multiple positive solutions for fractional Laplace problems with critical growth and sign-changing weight in non-contractible domains. (English) Zbl 1513.35024

Summary: We prove the existence of multiple positive solutions for a fractional Laplace problem with critical growth and sign-changing weight in non-contractible domains.

MSC:

35A15 Variational methods applied to PDEs
35S15 Boundary value problems for PDEs with pseudodifferential operators
35R11 Fractional partial differential equations
35B09 Positive solutions to PDEs
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces

References:

[1] Adachi, S., Tanaka, K.: Four positive solutions for the semilinear elliptic equation: −Δu+u=a(x)up+f(x)\(-\Delta u+u=a(x)u^p+f(x)\) in RN \(\mathbb{R}^N\). Calc. Var. 11, 63-95 (2000) · Zbl 0987.35039 · doi:10.1007/s005260050003
[2] Ambrosetti, A.: Critical Points and Nonlinear Variational Problems. Mémoires de la S. M. F. 2e série, vol. 49 (1992) · Zbl 0766.49006
[3] Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763-769 (2009) · doi:10.2298/TSCI160111018A
[4] Bahri, A., Coron, J.M.: On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Commun. Pure Appl. Math. 41, 253-294 (1988) · Zbl 0649.35033 · doi:10.1002/cpa.3160410302
[5] Bahri, A., Li, Y.Y.: On the min – max procedure for the existence of a positive solution for certain scalar field equations in RN \(\mathbb{R}^N\). Rev. Mat. Iberoam. 6, 1-15 (1990) · Zbl 0731.35036 · doi:10.4171/RMI/92
[6] Barriosa, B., Colorado, E., Servadeid, R., Soria, F.: A critical fractional equation with concave – convex power nonlinearities. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 32, 875-900 (2015) · Zbl 1350.49009 · doi:10.1016/j.anihpc.2014.04.003
[7] Ben Omrane, I., Gala, S., Kim, J.-M., Ragusa, M.A.: Logarithmically improved blow-up criterion for smooth solutions to the Leray-α-magnetohydrodynamic equations. Arch. Math. 55, 55-68 (2019) · Zbl 1474.35101 · doi:10.5817/AM2019-1-55
[8] Brézis, H., Lieb, E.H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 483-490 (1983) · Zbl 0526.46037 · doi:10.2307/2044999
[9] Brown, K.J., Zhang, Y.: The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function. J. Differ. Equ. 193, 481-499 (2003) · Zbl 1074.35032 · doi:10.1016/S0022-0396(03)00121-9
[10] Chang, K.-C.: Methods in Nonlinear Analysis. Springer, Berlin (2005) · Zbl 1081.47001
[11] Cont, R., Tankov, P.: Financial Modeling with Jump Processes. Chapman & Hall/CRC Financ. Math. Ser. Chapman and Hall/CRC, Boca Raton (2004) · Zbl 1052.91043
[12] Coron, J.M.: Topologie et cas limite des injections de Sobolev. C. R. Acad. Sci. Paris, Ser. I 299, 209-212 (1984) · Zbl 0569.35032
[13] Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 17, 324-353 (1974) · Zbl 0286.49015 · doi:10.1016/0022-247X(74)90025-0
[14] Feng, M., Li, P., Sun, S.: Symmetric positive solutions for fourth-order n-dimensional m-Laplace systems. Bound. Value Probl. 2018, 63 (2018) · Zbl 1499.34179 · doi:10.1186/s13661-018-0981-3
[15] Guariglia, E., Silvestrov, S.: A functional equation for the Riemann zeta fractional derivative. AIP Conf. Proc. 1798, 020063 (2017) · doi:10.1063/1.4972655
[16] He, H., Yang, J.: Positive solutions for critical inhomogeneous elliptic problems in non-contractible domains. Nonlinear Anal. 70, 952-973 (2009) · Zbl 1155.35373 · doi:10.1016/j.na.2008.01.024
[17] Li, C., Dao, X., Guo, P.: Fractional derivatives in complex planes. Nonlinear Anal. 71, 1857-1869 (2009) · Zbl 1173.26305 · doi:10.1016/j.na.2009.01.021
[18] Li, G., Yan, S., Yang, J.: An elliptic problem with critical growth in domains with shrinking holes. J. Differ. Equ. 198, 275-300 (2004) · Zbl 1086.35046 · doi:10.1016/j.jde.2003.06.001
[19] Li, X., Pang, L., Zhang, Y.: Existence of multiple positive solutions for fractional Laplace problems with critical growth. Preprint · Zbl 1467.49009
[20] Liu, Z., Tan, J.: Nonlocal elliptic hemivariational inequalities. Electron. J. Qual. Theory Differ. Equ. 2017, 66 (2017) · Zbl 1422.34022 · doi:10.1186/s13662-017-1106-5
[21] Majda, A., Tabak, E.: A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow. Nonlinear Phenomena in Ocean Dynamics, Los Alamos, NM, 1995, Physica D 98, 515-522 (1996) · Zbl 0899.76105
[22] Nezza, E.D., Palatucci, G., Valdinoci, E.: Hitchhikers guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[23] Palatucci, G., Pisante, A.: A global compactness type result for Palais-Smale sequences in fractional spaces. Nonlinear Anal. 117, 1-7 (2015) · Zbl 1312.35092 · doi:10.1016/j.na.2014.12.027
[24] Ragusa, M.A.: Commutators of fractional integral operators in vanishing-Morrey spaces. J. Glob. Optim. 40, 361-368 (2008) · Zbl 1143.42020 · doi:10.1007/s10898-007-9176-7
[25] Ragusa, M.A., Tachikawa, A.: On continuity of minimizers for certain quadratic growth functionals. J. Math. Soc. Jpn. 57, 691-700 (2005) · Zbl 1192.49043 · doi:10.2969/jmsj/1158241929
[26] Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101, 275-302 (2014) · Zbl 1285.35020 · doi:10.1016/j.matpur.2013.06.003
[27] Schwartz, J.T.: Nonlinear Functional Analysis. Gordon & Breach, New York (1969) · Zbl 0203.14501
[28] Secchi, S., Shioji, N., Squassina, M.: Coron problem for fractional equations. Differ. Integral Equ. 28, 103-118 (2015) · Zbl 1363.35371
[29] Servadei, R., Valdinoci, E.: Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators. Rev. Mat. Iberoam. 29, 1091-1126 (2013) · Zbl 1275.49016 · doi:10.4171/RMI/750
[30] Servadei, R., Valdinoci, E.: Variational methods for the non-local operators of elliptic type. Discrete Contin. Dyn. Syst. 33, 2105-2137 (2013) · Zbl 1303.35121
[31] Servadei, R., Valdinoci, E.: Weak and viscosity solutions of the fractional Laplace equation. Publ. Mat. 58, 133-154 (2014) · Zbl 1292.35315 · doi:10.5565/PUBLMAT_58114_06
[32] Servadei, R., Valdinoci, E.: The Brezis-Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367, 67-102 (2015) · Zbl 1323.35202 · doi:10.1090/S0002-9947-2014-05884-4
[33] Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60, 67-112 (2007) · Zbl 1141.49035 · doi:10.1002/cpa.20153
[34] Tarantello, G.: On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 9, 281-304 (1992) · Zbl 0785.35046 · doi:10.1016/S0294-1449(16)30238-4
[35] Valdinoci, E.: From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl. 49, 33-44 (2009) · Zbl 1242.60047
[36] Vlahos, L.; Isliker, H.; Kominis, Y.; Hizonidis, K.; Bountis, T. (ed.), Normal and anomalous diffusion: a tutorial, No. 10 (2008)
[37] Wan, Y., Yang, J.: The existence of multiple solutions of semilinear elliptic involving Sobolev critical exponent. Nonlinear Anal. 68, 2569-2593 (2008) · Zbl 1151.35362 · doi:10.1016/j.na.2007.02.005
[38] Wang, H., Wu, T.: Symmetry breaking in a bounded symmetry domain. Nonlinear Differ. Equ. Appl. 11, 361-377 (2004) · Zbl 1210.35114 · doi:10.1007/s00030-004-2008-2
[39] Wu, T.: Three positive solutions for Dirichlet problems involving critical Sobolev exponent and sign-changing weight. J. Differ. Equ. 249, 1549-1578 (2010) · Zbl 1200.35138 · doi:10.1016/j.jde.2010.07.021
[40] Zhu, X.: A perturbation result on positive entire solutions of a semilinear elliptic equation. J. Differ. Equ. 92, 163-178 (1991) · Zbl 0739.35027 · doi:10.1016/0022-0396(91)90045-B
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.