×

\(\mathrm{PGL}_2(q)\) cannot be determined by its \(\operatorname{cs}\). (English) Zbl 1513.20021

Summary: For a finite group \(G\), let \(Z(G)\) denote the center of \(G\) and \(\operatorname{cs}^\ast (G)\) be the set of non-trivial conjugacy class sizes of \(G\). In this paper, we show that if \(G\) is a finite group such that for some odd prime power \(q\geq 4\), \(\operatorname{cs}^\ast (G)=\operatorname{cs}^\ast (\mathrm{PGL}_2(q))\), then either \(G \cong \mathrm{PGL}_2(q) \times Z(G)\) or \(G\) contains a normal subgroup \(N\) and a non-trivial element \(t\in G\) such that \(N \cong \mathrm{PSL}_2(q) \times Z(G)\), \(t^2 \in N\) and \(G=N.\langle t\rangle\). This shows that the almost simple groups cannot be determined by their set of conjugacy class sizes (up to an abelian direct factor).

MSC:

20D06 Simple groups: alternating groups and groups of Lie type
20D60 Arithmetic and combinatorial problems involving abstract finite groups
20E45 Conjugacy classes for groups
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
Full Text: DOI

References:

[1] N. Ahanjideh, On the Thompson’s conjecture for simple groups, Journal of Algebra 344(1) (2011) 205-228. · Zbl 1247.20015
[2] N. Ahanjideh, On the Thompson’s conjecture on conjugacy class sizes, International Journal of Algebra and Computation 23(1) (2013) 37-68. · Zbl 1281.20015
[3] N. Ahanjideh, Thompson’s conjecture for some simple groups with connected prime graph, Algebra and Logic 51(6) (2013) 451-478. · Zbl 1309.20019
[4] N. Ahanjideh, M. Ahanjideh, On the validity of Thompson’s conjecture for simple groups, Communications in Algebra 41(11) (2013) 4116-4145. · Zbl 1285.20010
[5] N. Ahanjideh, Thompson’s conjecture for simple groups of Lie typeBnandCn, Journal of Group Theory 19(4) (2016) 713-733. · Zbl 1348.20018
[6] N. Ahanjideh, Thompson’s conjecture on conjugacy class sizes for the simple groupPSUn(q), International Journal of Algebra and Computation 27(6) (2017) 769-792. · Zbl 1396.20007
[7] N. Ahanjideh, Finite groups with the same conjugacy class sizes as a simple group, International Journal of Group Theory 8 (2019) 23-33. · Zbl 1443.20012
[8] Z. Akhlaghi, M. Khatami, T. Le, J. Moori, H. P. Tong-Viet, A dual version of Huppert’s conjecture on conjugacy class sizes, Journal of Group Theory 18 (2015) 115-131. · Zbl 1311.20011
[9] A. Babai, A. Mahmoudifar, Thompson’s conjecture for the alternating group of degree 2pand 2p+1, Czechoslovak Mathematical Journal 67 (4) (2017) 1049-1058. · Zbl 1488.20015
[10] A. R. Camina and R. D. Camina, The influence of conjugacy class sizes on the structure of groups: a survey, Asian-European Journal of Mathematics 4(4) (2011) 559-588. · Zbl 1257.20030
[11] G. Chen, On Thompson’s conjecture, Journal of Algebra 185 (1996) 184-193. · Zbl 0861.20018
[12] D. Chillag, M. Herzog, On the length of the conjugacy classes of groups, Journal of Algebra 131 (1990) 110-125. · Zbl 0694.20015
[13] I.B. Gorshkov, Towards Thompson’s conjecture for alternating and symmetric groups, Journal of Group Theory 19 (2016) 331-336. · Zbl 1341.20022
[14] B. Khosravi, M. Khatami, Z. Akhlaghi, Some new characterizations forPGL(2,q), CUBO, A Mathematical Journal 13 (2) (2011) 151-161. · Zbl 1247.20030
[15] A.S. Kondratiev, Prime graph components of simple groups, Mathematics of the USSR-Sbornik 67 (1) (1990) 235-247. · Zbl 0698.20009
[16] A.V. Vasilev, On Thompson’s conjecture, Siberian Electronic Mathematical Reports 6 (2009) 457-464. · Zbl 1289.20057
[17] L. Wang, W. Shi, On Thompson’s conjecture for almost sporadic simple groups, Journal of Algebra and Its Applications 13 (2014) DOI:10.1142/S0219498813500898. · Zbl 1297.20013
[18] J.S. Williams, Prime graph components of groups, Journal of Algebra 69 (2) (1981) 487-513 · Zbl 0471.20013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.