×

Extensions of a near-group category of type \((\mathbb{Z}_2;1)\). (English) Zbl 1513.18012

The theory of fusion categories arises in many areas of mathematics and physics such as semisimple Hopf algebras, quantum groups, vertex operator algebras and topological quantum field theory. Group extensions play a significant role in the theory of fusion categories. This paper is concerned with near-group categories of type \(\left( \mathbb{Z}_{2},1\right)\).
The principal objective in this paper is to establish the following two theorems.
I. Let \(\mathcal{D}\)be a near-group fusion category of type \(\left(\mathbb{Z}_{2},1\right) \)and \[\mathcal{C}={\bigoplus\nolimits_{g\in G}}\mathcal{C}_{g}\] be an extension of \(\mathcal{D}\). Assume that \(\mathcal{C}\)is braided. Then the structure of \(\mathcal{C}\) is exactly one of the following:
(1) If \(\mathcal{C}\) is of type \(\left( 1,2m;2,m\right) \), then \(\mathcal{C}\)is a \(\mathbb{Z}_{2}\)-equivariantization of a braided pointed fusion category \(\mathcal{D}\)of dimension \(3m\).
(2) If \(\mathcal{C}\) is of type \(\left( 1,2m;\sqrt{3},2m;2,m\right) \), then \(\mathcal{C}\)is a \(\mathbb{Z}_{2}\)-equivariantization of a fusion category \(\mathcal{D}\)which is of type \(\left( 1,3m;\sqrt{3},m\right) \) and is a \(\mathbb{Z}_{2}\)-extension of a pointed fusion category of dimension \(3m\). In particular, \(\mathcal{D}\)is not braided.
(3) If \(\mathcal{C}\) is of type \(\left( 1,2m;2,m;\sqrt{6},m\right) \), then \(\mathcal{C}\)is a \(\mathbb{Z}_{2}\)-equivariantization of a fusion category \(\mathcal{D}\)which is of type \(\left( 1,3m;\sqrt{6},m/2\right) \) and is a \(\mathbb{Z}_{2}\)-extension of a pointed fusion category of dimension \(3m\). In particular, \(\mathcal{D}\)is not braided.
II. Let \(\mathcal{D}\)be a near-group fusion category of type \(\left(\mathbb{Z}_{2},1\right) \)and \[\mathcal{C}={\bigoplus\nolimits_{g\in G}}\mathcal{C}_{g}\] be an extension of \(\mathcal{D}\). Then \(\mathcal{C}\) is group-theoretical in one of the following forms:
(1) \(\mathcal{C}\) is braided and integral.
(2) \(\mathcal{C}\) is equivalent as a tensor category to the category of finite-dimensional representations of semisimple Hopf algebra.

MSC:

18M20 Fusion categories, modular tensor categories, modular functors
16T05 Hopf algebras and their applications
Full Text: DOI

References:

[1] B. Bakalov and J. Alexander Kirillov, Lectures on Tensor Categories and Modular Functors, University Lecture Series, vol. 21, Amer. Math. Soc. (Providence, RI, 2001). · Zbl 0965.18002
[2] A. Bruguières and S. Natale, Exact sequences of tensor categories, Int. Math. Res. Not., 2011 (2011), 5644-5705. · Zbl 1250.18005
[3] P. Deligne, Catégories Tannakiennes, in: The Grothendieck Festschrift, Springer (Berlin, 1990), pp. 111-195.
[4] C. Dong and Q. Wang, Quantum dimensions and fusion rules for parafermion vertex operator algebras, Proc. Amer. Math. Soc., 144 (2016), 1483-1492. · Zbl 1397.17032
[5] J. Dong, Slightly trivial extensions of a fusion category, Arch. Math., 114 (2020), 19-24. · Zbl 1431.18009
[6] J. Dong, On extensions of two families of Tambara-Yamagami categories, Comm. Algebra, 50 (2022), 4016-4023. · Zbl 1490.18025
[7] J. Dong, G. Chen and Z. Wang, Fusion categories containing a fusion subcategory with maximal rank, J. Algebra, 604 (2022) 107-127. · Zbl 1487.18018
[8] J. Dong and H. Sun, Structure, examples and classification for generalized near-group fusion categories, J. Algebra, 568 (2021), 386-407. · Zbl 1467.18038
[9] V. Drinfeld, S. Gelaki, D. Nikshych and V. Ostrik, Group-theoretical properties of nilpotent modular categories, arXiv:0704.0195 (2007). · Zbl 1201.18005
[10] V. Drinfeld, S. Gelaki, D. Nikshych, V. Ostrik, On braided fusion categories. I, Selecta Math. (N.S.), 16 (2010), 1-119. · Zbl 1201.18005
[11] S. Eilenberg, S. MacLane, On the groups H(π,n). I, Ann. of Math., 28 (1953), 55-106. · Zbl 0050.39304
[12] P. Etingof, S. Gelaki, D. Nikshych and V. Ostrik, Tensor Categories, Mathematical surveys and monographs, vol. 205, Amer. Math. Soc. (Providence, RI, 2015). · Zbl 1365.18001
[13] P. Etingof, D. Nikshych and V. Ostrik, On fusion categories, Ann. of Math. (2), 162 (2005), 581-642. · Zbl 1125.16025
[14] P. Etingof, D. Nikshych and V. Ostrik, Weakly group-theoretical and solvable fusion categories, Adv. Math., 226 (2011), 176-205. · Zbl 1210.18009
[15] J. Fröhlich and T. Kerler, Quantum Groups, Quantum Categories and Quantum Field Theory, Lecture Notes in Mathematics, vol. 1542, Springer (Berlin, 1993). · Zbl 0789.17005
[16] C. Galindo, Crossed product tensor categories, J. Algebra, 337 (2011), 233-252. · Zbl 1239.18007
[17] S. Gelaki and D. Nikshych, Nilpotent fusion categories, Adv. Math., 217 (2008), 1053- 1071. · Zbl 1168.18004
[18] C. Kassel, Quantum Groups, Springer (Berlin, 1995). · Zbl 0808.17003
[19] A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Physics 321 (2006), 2-111. · Zbl 1125.82009
[20] A. Masuoka, Semisimple Hopf algebras of dimension 6, 8, Israel J. Math., 92 (1995), 361-373. · Zbl 0839.16036
[21] S. Montgomery, Hopf Algebras and their Actions on Rings, CBMS Regional Conference Series in Mathematics, vol. 82, Amer. Math. Soc. (Providence, RI, 1993). · Zbl 0793.16029
[22] M. Müger, Galois theory for braided tensor categories and the modular closure, Adv. Math., 150 (2000), 151-201. · Zbl 0945.18006
[23] D. Naidu, D. Nikshych and S. Witherspoon, Fusion subcategories of representation categories of twisted quantum doubles of finite groups, Int. Math. Res. Not., 2009 (2009), 4183-4219. · Zbl 1206.18006
[24] S. Natale, On group theoretical Hopf algebras and exact factorizations of finite groups, J. Algebra, 270 (2003), 199-211. · Zbl 1040.16027
[25] S. Natale and J. Y. Plavnik, Solvability of a class of braided fusion categories, Appl. Categor. Struct., 22 (2014), 229-240. · Zbl 1309.18006
[26] D. Nikshych, Non-group-theoretical semisimple Hopf algebras from group actions on fusion categories, Selecta Math. (N.S.), 14 (2008), 145-161. · Zbl 1177.16019
[27] V. Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups, 8 (2003), 177-206. · Zbl 1044.18004
[28] J. Siehler, Near-group categories, Algebr. Geom. Topol., 3 (2003), 719-775. · Zbl 1033.18004
[29] D. Tambara and S. Yamagami, Tensor categories with fusion rules of self-duality for finite abelian groups, J. Algebra, 209 (1998), 692-707. · Zbl 0923.46052
[30] J. E. Thornton, Generalized near-group categories, PhD thesis, University of Oregon, 2012.
[31] V. Turaev, Quantum Invariants of Knots and 3-Manifolds, de Gruyter Stud. Math., vol. 18, de Gruyter (Berlin, 1994). · Zbl 0812.57003
[32] K. Walker and Z. Wang, (3+1)-TQFTs and topological insulators, Front. Physics, 7 (2012), 150-159.
[33] Z. Wang, Topological Quantum Computation, CBMS Regional Conference Series in Mathematics, vol. 112, Amer. Math. Soc. (Providence, RI, 2010). · Zbl 1239.81005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.