×

Additive mappings on semiprime rings functioning as centralizers. (English) Zbl 1513.16018

Summary: The objective of this research is to prove that an additive mapping \(\mathcal{T}:R \rightarrow R\) is a centralizer on \(R\) if it satisfies any one of the following identities:
(i)
\(3\mathcal{T}(x^{3n})=\mathcal{T}(x^n)x^{2n}+x^n\mathcal{T}(x^n)x^n+x^{2n}\mathcal{T}(x^n)\)
(ii)
\(2\mathcal{T}(x^{2n})=\mathcal{T}(x^n)x^n+x^n\mathcal{T}(x^n)\)
(iii)
\(\mathcal{T}(x^{3n})=x^n\mathcal{T}(x^n)x^n\)
for all \(x\in R\), where \(n\leq 1\) is a fixed integer and \(R\) is any suitably torsion free semiprime ring. Some results on involution “\(\,\ast\,\)” are also presented as consequences of the main theorems. In addition, we will take criticism in account with examples.

MSC:

16N60 Prime and semiprime associative rings
16W25 Derivations, actions of Lie algebras
16R50 Other kinds of identities (generalized polynomial, rational, involution)

References:

[1] A. Z. ANSARI AND F. SHUJAT, Semiprime rings with involution and centralizers, J. Appl. Math. & Informatics, (3-4) 40 (2022), pp. 709-717. · Zbl 1513.16017
[2] M. ASHRAF, AND M. R. MOZUMDER, On Jordanα-∗-centralizers in semiprime rings with involution, Int. J. Contemp. Math. Sciences, (23) 7 (2012), pp. 1103-1112. · Zbl 1254.16035
[3] K.I. BEIDAR„ W. S. MATTINDALE, AND A. V. MIKHALEV, Ring with Generalized Identities, Markel Dekker Inc. New York, 1996. · Zbl 0847.16001
[4] A. V. DAELE, Multiplier Hopf algebras, Trans. Amer. Math. Soc., 342 (1994), pp. 917-932. · Zbl 0809.16047
[5] A. V. DAELE AND Y. ZHANG, A Survey on multiplier Hopf algebras, Hopf algebras and quantum groups (Brussels, 1998), pp. 269-306.
[6] S. HELGOSEN, Multipliers of Banach algebras, Ann. of Math., 64 (1956) pp. 240-254. · Zbl 0072.32303
[7] T. HUSAIN, Multipliers of Topological algebras, Dessertation Math. (Rozprawy Mat.) 285 (1989) pp. 44. · Zbl 0676.46038
[8] B. E. JOHNSON, An introduction to the theory of centralizers, Proc. London Math. Soc., 14 (1964), pp. 299-320 . · Zbl 0143.36102
[9] B.E. JOHNSON, Centralizers on certain topological algebras, J. London Math. Soc., 39 (1964), pp. 603-614. · Zbl 0124.06902
[10] B. E. JOHNSON, Continuity of centralizers on Banach algebras, J. London Math. Soc., 41 (1966), pp. 639-640. · Zbl 0143.36103
[11] L. A. KHAN,N. MOHAMMAD AND A. B. THAHEEM, Double multipliers on topological algebras, Internat. J. Math. Math. Sci., 22 (1999), pp. 629-636. · Zbl 1007.46042
[12] R. LARSEN, An Introduction to the Theory of Multipliers, Springer-Verlag, Berlin, 1971. · Zbl 0213.13301
[13] N. MOHAMMAD, L. A. KHAN, AND A. B. THAHEEM, On closed range multipliers on topological algebras, Scientiae Math. Japonica, 53 (2001), pp. 89-96. · Zbl 1008.46018
[14] L. MOLNAR, On centralizers of anH∗- algebra, Publ. Math. Debrecen,(1-2) 46 (1995), pp. 89-95. · Zbl 0860.46037
[15] J. VUKMAN, An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carol., (3) 40 (1999), pp. 447-456. · Zbl 1014.16021
[16] J. VUKMAN, Centralizers of semiprime ring, Comment. Math. Univ. Caroline, (2) 42(2001), 237245.
[17] J. VUKMAN AND I. KOSI-ULBL, An equation related to centralizers in semiprime rings, Glasnik Matematicki, (58) 38 (2003), pp. 253-261 · Zbl 1059.16013
[18] J. K. WANG, Multipliers of commutative Banach algebras, Pacific. J. Math., 11 (1961), pp. 1131- 1149. · Zbl 0127.33302
[19] J. G. WENDEL, Left centralizers and isomorphisms of group algebras, Pacific J. Math., 2 (1952), pp. 251-266. · Zbl 0049.35702
[20] B. ZALAR, On centralizers of semiprime rings, Comment. Math. Univ. Carol., 32 (1991), pp. 609- 614 · Zbl 0746.16011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.