×

A moving target tracking control of quadrotor UAV based on passive control and super-twisting sliding mode control. (English) Zbl 1512.93101

Summary: A novel asymptotic tracking controller for an underactuated quadrotor unmanned aerial vehicle (UAV) is proposed to solve a moving target tracking problem. Firstly, the control system is decoupled into the position control system and the attitude control system. Secondly, a method combined artificial potential field with passivity control (APF&PC) is introduced for the positioning system to achieve high-precision tracking of moving target at a fixed distance. Thirdly, a super-twisting sliding mode (STSM) method with an improved reaching law for the attitude system is applied to ensure that the attitude converges to the desired value. Furthermore, the stabilities of two subsystems are proved, and sufficient stability conditions are derived based on the passive method and Lyapunov method, respectively. Finally, simulation results of the moving target tracking verify the superiority and robustness of the proposed control method in the presence of parameter uncertainties and external disturbances.

MSC:

93C85 Automated systems (robots, etc.) in control theory
70Q05 Control of mechanical systems
93B12 Variable structure systems
Full Text: DOI

References:

[1] Liu, B.; Zhang, W.; Chen, W.; Huang, H.; Guo, S., Online computation offloading and traffic routing for UAV swarms in edge-cloud computing, IEEE Transactions on Vehicular Technology, 69, 8, 8777-8791 (2020) · doi:10.1109/tvt.2020.2994541
[2] Esfahlan, S. S., Mixed reality and remote sensing application of unmanned aerial vehicle in fire and smoke detection, Journal of Industrial Information Integration, 15, 42-49 (2019) · doi:10.1016/j.jii.2019.04.006
[3] Yang, S.; Han, J.; Xia, L.; Chen, Y.-H., Adaptive robust servo constraint tracking control for an underactuated quadrotor UAV with mismatched uncertainties, ISA Transactions, 106, 12-30 (2020) · doi:10.1016/j.isatra.2020.07.007
[4] Ye, H.; Yang, X.; Shen, H.; Li, R., Standoff tracking of a moving target for quadrotor using Lyapunov potential function, International Journal of Control, Automation and Systems, 18, 845-855 (2020) · doi:10.1007/s12555-019-0101-x
[5] Mario, S.; Andrea, T.; Zenerino, E.; Chiaberge, M., Multipurpose UAV for search and rescue operations in mountain avalanche events, Geomatics, Natural Hazards and Risk, 8, 18-33 (2017) · doi:10.1080/19475705.2016.1238852
[6] Tekinalp, O.; Ali, . A. K.; Kaya, D., Propulsion system selection and modeling for a quadrotor with search and rescue mission, Proceedings of the 54th AIAA Aerospace Sciences Meeting · doi:10.2514/6.2016-1528
[7] Wang, S.; Jiang, F.; Zhang, B.; Ma, R.; Hao, Q., Development of UAV-based target tracking and recognition systems, IEEE Transactions on Intelligent Transportation Systems, 21, 8, 3409-3422 (2020) · doi:10.1109/tits.2019.2927838
[8] Rabah, M.; Rohan, A.; Mohamed, S. A. S.; Kim, S.-H., Autonomous moving target-tracking for a UAV quadcopter based on fuzzy-PI, IEEE Access, 7, 38407-38419 (2019) · doi:10.1109/access.2019.2906345
[9] Araar, O.; Aouf, N.; Vitanov, I., Vision based autonomous landing of multirotor UAV on moving platform, Journal of Intelligent & Robotic Systems, 85, 2, 369-384 (2017) · doi:10.1007/s10846-016-0399-z
[10] Chen, X.; Xue, W.; Qiu, H.; Ye, H., A moving target tracking control and obstacle avoidance of quadrotor UAV based on sliding mode control using artificial potential field and RBF neural networks, Proceedings of the 39th Chinese Control Conference
[11] Roger, M. C.; Aguilar, L. T., Robust PID control of quadrotors with power reduction analysis, ISA Transactions, 98, 47-62 (2020) · doi:10.1016/j.isatra.2019.08.045
[12] Zhang, Y.; Chen, Z.; Zhang, X.; Sun, Q.; Sun, M., A novel control scheme for quadrotor UAV based upon active disturbance rejection control, Aerospace Science and Technology, 79, 601-609 (2018) · doi:10.1016/j.ast.2018.06.017
[13] Martins, L.; Cardeira, C.; Oliveira, P., Feedback linearization with zero dynamics stabilization for quadrotor control, Journal of Intelligent & Robotic Systems, 101, 7 (2021) · doi:10.1007/s10846-020-01265-2
[14] Koksal, N.; An, H.; Fidan, B., Backstepping-based adaptive control of a quadrotor UAV with guaranteed tracking performance, ISA Transactions, 105, 98-110 (2020) · doi:10.1016/j.isatra.2020.06.006
[15] Eskandarpour, A.; Sharf, I., A constrained error-based MPC for path following of quadrotor with stability analysis, Nonlinear Dynamics, 99, 2, 899-918 (2020) · Zbl 1459.93069 · doi:10.1007/s11071-019-04859-0
[16] Yang, S.; Xian, B., Energy-based nonlinear adaptive control design for the quadrotor UAV system with a suspended payload, IEEE Transactions on Industrial Electronics, 67, 3, 2054-2064 (2020) · doi:10.1109/tie.2019.2902834
[17] Zou, Y.; Meng, Z., Immersion and invariance-based adaptive controller for quadrotor systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49, 11, 2288-2297 (2019) · doi:10.1109/tsmc.2018.2790929
[18] Lin, X.; Liu, J.; Yu, Y.; Sun, C., Event-triggered reinforcement learning control for the quadrotor UAV with actuator saturation, Neurocomputing, 415, 11, 135-145 (2020) · doi:10.1016/j.neucom.2020.07.042
[19] Vazquez-Nicolas, J. M.; Zamora, E.; González-Hernández, I.; Lozano, R.; Sossa, H., PD+SMC quadrotor control for altitude and crack Recognition using deep learning, International Journal of Control, Automation and Systems, 18, 5, 834-844 (2020) · doi:10.1007/s12555-018-0852-9
[20] Shao, S.; Chen, M.; Hou, J.; Zhao, Q., Event-triggered-based discrete-time neural control for a quadrotor UAV using disturbance observer, IEEE/ASME Transactions on Mechatronics, 26, 2, 689-699 (2021) · doi:10.1109/tmech.2021.3051835
[21] Mei, K.; Ma, L.; He, R.; Ding, S., Finite-time controller design of multiple integrator nonlinear systems with input saturation, Applied Mathematics and Computation, 372 (2020) · Zbl 1433.93047 · doi:10.1016/j.amc.2019.124986
[22] Liu, L.; Zheng, W. X.; Ding, S., An adaptive SOSM controller design by using a sliding-mode-based filter and its application to buck converter, IEEE Transactions on Circuits and Systems I: Regular Papers, 67, 7, 2409-2418 (2020) · Zbl 1468.93097 · doi:10.1109/tcsi.2020.2973254
[23] Ding, S.; Chen, W.-H.; Mei, K.; Murray-Smith, D. J., Disturbance observer design for nonlinear systems represented by input-output models, IEEE Transactions on Industrial Electronics, 67, 2, 1222-1232 (2020) · doi:10.1109/tie.2019.2898585
[24] Chen, F.; Jiang, R.; Zhang, K.; Jiang, B.; Tao, G., Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV, IEEE Transactions on Industrial Electronics, 63, 8, 5044-5056 (2016)
[25] Xu, G.; Xia, Y.; Zhai, D. H.; Ma, D., Adaptive prescribed performance terminal sliding mode attitude control for quadrotor under input saturation, IET Control Theory & Applications, 14, 17, 2473-2480 (2020) · Zbl 1542.93227 · doi:10.1049/iet-cta.2019.0488
[26] Castañeda, H.; Salas-Peña, O. S.; León-Morales, J. D., Extended observer based on adaptive second order sliding mode control for a fixed wing UAV, ISA Transactions, 66, 226-232 (2017) · doi:10.1016/j.isatra.2016.09.013
[27] Du, Y.; Zhang, X.; Nie, Z., A real-time collision avoidance strategy in dynamic airspace based on dynamic artificial potential field algorithm, IEEE Access, 7, 169469-169479 (2019)
[28] Chen, Y.-B.; Luo, G.-C.; Mei, Y.-S.; Yu, J.-Q.; Su, X.-L., UAV path planning using artificial potential field method updated by optimal control theory, International Journal of Systems Science, 47, 6, 1407-1420 (2016) · Zbl 1333.93176 · doi:10.1080/00207721.2014.929191
[29] Hu, Q.; Dong, H.; Zhang, Y.; Ma, G., Tracking control of spacecraft formation flying with collision avoidance, Aerospace Science and Technology, 42, 353-364 (2015) · doi:10.1016/j.ast.2014.12.031
[30] Ortega, R.; van der Schaft, A.; Castanos, F.; Astolfi, A., Control by interconnection and standard passivity-based control of port-hamiltonian systems, IEEE Transactions on Automatic Control, 53, 11, 2527-2542 (2008) · Zbl 1367.93273 · doi:10.1109/tac.2008.2006930
[31] Ha, C.; Zuo, Z.; Choi, F. B.; Lee, D., Passivity-based adaptive backstepping control of quadrotor-type UAVs, Robotics and Autonomous Systems, 62, 9, 1305-1315 (2014) · doi:10.1016/j.robot.2014.03.019
[32] Jose, G. R.; Hugo, R., Asymptotic stability for a transformed nonlinear UAV model with a suspended load via energy shaping, European Journal of Control, 52, 87-96 (2020) · Zbl 1431.93053
[33] Raffo, G. V.; Ortega, M. G.; Rubio, F. R., An integral predictive/nonlinear H∞ control structure for a quadrotor helicopter, Automatica, 46, 1, 29-39 (2010) · Zbl 1214.93042 · doi:10.1016/j.automatica.2009.10.018
[34] Das, A.; Lewis, F.; Subbarao, K., Backstepping approach for controlling a quadrotor using Lagrange form dynamics, Journal of Intelligent and Robotic Systems, 56, 1-2, 127-151 (2009) · Zbl 1203.68222 · doi:10.1007/s10846-009-9331-0
[35] Bu, N.; Deng, M.; Deng, M., Passivity-based tracking control for uncertain nonlinear feedback systems, Journal of Robotics and Mechatronics, 28, 6, 837-841 (2016) · doi:10.20965/jrm.2016.p0837
[36] Zheng, E.-H.; Xiong, J.-J.; Luo, J.-L., Second order sliding mode control for a quadrotor UAV, ISA Transactions, 53, 4, 1350-1356 (2014) · doi:10.1016/j.isatra.2014.03.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.