×

Fast synergetic control for chaotic oscillation in the power system based on input-output feedback linearization. (English) Zbl 1512.93033

Summary: This paper presents a fast synergetic control scheme for chaotic oscillation in a three-bus power system model. First, the coupling dynamic model of a controlled power system with the current source converter-based STATCOM device and energy storage device is established. Then, the input-output linearization process for the controlled power system is derived step by step, the control problem for the complex nonlinear power system model is completely transformed into the control of linear systems, and a fast synergetic control scheme is proposed for these linear systems. Since the designed control inputs contain complex system functions which are very difficult to obtain and reduce the engineering practicability of the designed controllers, the assumption that system functions are bounded is introduced into the controller design process, and the controllers are redesigned. The remarkable advantages of the proposed control method are that it improves the rapidity of traditional synergetic control and avoids complex system functions in control inputs. Finally, the effectiveness and the superiority of the control scheme are verified by simulation results.

MSC:

93B12 Variable structure systems
34H10 Chaos control for problems involving ordinary differential equations
93C15 Control/observation systems governed by ordinary differential equations
Full Text: DOI

References:

[1] Wang, B. H.; Yang, C. W.; Zhang, Q., Summary of bifurcation and chaos research in electric power system, Transactions of China Electrotechnical Society, 20, 7, 1-10 (2005), in Chinese
[2] Dobson, I.; Chiang, H.-D., Towards a theory of voltage collapse in electric power systems, Systems & Control Letters, 13, 3, 253-262 (1989) · Zbl 0689.93042 · doi:10.1016/0167-6911(89)90072-8
[3] Hsiao-Dong Chiang, H. D.; Chih-Wen Liu, C. W.; Varaiya, P. P.; Wu, F. F.; Lauby, M. G., Chaos in a simple power system, IEEE Transactions on Power Systems, 8, 4, 1407-1417 (1993) · doi:10.1109/59.260940
[4] Yu, Y.; Jia, H.; Li, P.; Su, J., Power system instability and chaos, Electric Power Systems Research, 65, 3, 187-195 (2003) · doi:10.1016/s0378-7796(02)00229-8
[5] Jing, Z.; Xu, D.; Chang, Y.; Chen, L., Bifurcations, chaos, and system collapse in a three node power system, International Journal of Electrical Power & Energy Systems, 25, 6, 443-461 (2003) · doi:10.1016/s0142-0615(02)00130-8
[6] Ni, J.; Liu, C.; Liu, K.; Pang, X., Variable speed synergetic control for chaotic oscillation in power system, Nonlinear Dynamics, 78, 1, 681-690 (2014) · doi:10.1007/s11071-014-1468-0
[7] Ma, C. Y.; Wang, F. X.; Li, Z. J., Adaptive fixed-time fast terminal sliding mode control for chaotic oscillation in power system, Mathematical Problems in Engineering, 2018 (2018) · Zbl 1427.93212 · doi:10.1155/2018/5819428
[8] Ni, J.; Liu, L.; Liu, C.; Hu, X.; Li, S., Fast fixed-time nonsingular terminal sliding mode control and its application to chaos suppression in power system, IEEE Transactions on Circuits and Systems II: Express Briefs, 64, 2, 151-155 (2017) · doi:10.1109/tcsii.2016.2551539
[9] Ni, J. K.; Liu, L.; Liu, C. X., Chattering-free time scale separation sliding mode control design with application to power system chaos suppression, Mathematical Problems in Engineering, 2016 (2016) · Zbl 1400.93109 · doi:10.1155/2016/5943934
[10] Alrifai, M. T.; Zribi, M., Sliding mode control of chaos in a single machine connected to an infinite bus power system, Mathematical Problems in Engineering, 2018 (2018) · Zbl 1426.93218 · doi:10.1155/2018/2703684
[11] Wei, D.; Luo, X.; Qin, Y., Controlling bifurcation in power system based on LaSalle invariant principle, Nonlinear Dynamics, 63, 3, 323-329 (2011) · doi:10.1007/s11071-010-9806-3
[12] Mohamed, Z.; Alrifai, M. T.; Nejib, S., Control of chaos in a single machine infinite bus power system using the discrete sliding mode control technique, Discrete Dynamics in Nature & Society, 2018 (2018) · Zbl 1417.93107
[13] Zhao, H.; Ma, Y. J.; Liu, S. J., Controlling chaos in power system based on finite-time stability theory, Chinese Physics B, 20, 12, 1-8 (2011) · doi:10.1088/1674-1056/20/12/120501
[14] Ma, C.-Y.; Liu, J.-H.; Wang, C.-L., Chaos of a power system model and its control, Journal of Vibration and Control, 18, 14, 2176-2185 (2012) · doi:10.1177/1077546311429587
[15] Ni, J.; Liu, L.; Liu, C.; Hu, X.; Shen, T., Fixed-time dynamic surface high-order sliding mode control for chaotic oscillation in power system, Nonlinear Dynamics, 86, 1, 401-420 (2016) · Zbl 1349.93159 · doi:10.1007/s11071-016-2897-8
[16] Canizares, C. A., Power flow and transient stability models of FACTS controllers for voltage and angle stability studies, Proceedings of the IEEE Power Engineering Society Winter Meeting, IEEE
[17] Mithulananthan, N.; Canizares, C. A.; Reeve, J.; Rogers, G. J., Comparison of PSS, SVC, and STATCOM controllers for damping power system oscillations, IEEE Transactions on Power Systems, 18, 2, 786-792 (2003) · doi:10.1109/tpwrs.2003.811181
[18] Chen, H.; Wang, Y.; Zhou, R., Analysis of voltage stability enhancement via unified power flow controller, Proceedings of the International Conference on Power System Technology, IEEE
[19] Guo, J.; Crow, M. L.; Sarangapani, J., An improved UPFC control for oscillation damping, IEEE Transactions on Power Systems, 24, 1, 288-296 (2009) · doi:10.1109/tpwrs.2008.2008676
[20] Jiang, Q.; Zou, Z.; Wang, Z.; Cao, Y., Design of UPFC controller in large-scale power systems based on immune genetic algorithm, Transactions of the Institute of Measurement and Control, 28, 1, 15-25 (2006) · doi:10.1191/0142331206tm159oa
[21] Wang, Y.; Chen, H.; Zhou, R., A nonlinear controller design for SVC to improve power system voltage stability, International Journal of Electrical Power & Energy Systems, 22, 7, 463-470 (2000) · doi:10.1016/s0142-0615(00)00023-5
[22] Wang, Y.; Tan, Y. L.; Guo, G., Robust nonlinear coordinated generator excitation and SVC control for power systems, International Journal of Electrical Power & Energy Systems, 22, 3, 187-195 (2000) · doi:10.1016/s0142-0615(99)00049-6
[23] Wei Qiao, W.; Harley, R. G.; Venayagamoorthy, G. K., Coordinated reactive power control of a large wind farm and a STATCOM using heuristic dynamic programming, IEEE Transactions on Energy Conversion, 24, 2, 493-503 (2009) · doi:10.1109/tec.2008.2001456
[24] Shahgholian, G.; Faiz, J., Static synchronous compensator for improving performance of power system: a review, International Review of Electrical Engineering, 5, 5, 2333-2342 (2010)
[25] Jain, A. K.; Joshi, K.; Behal, A.; Mohan, N., Voltage regulation with STATCOMs: modeling, control and results, IEEE Transactions on Power Delivery, 21, 2, 726-735 (2006) · doi:10.1109/tpwrd.2005.855489
[26] Zhou, J. F.; Gu, Y. Q.; Wei, S. Q., Comprehensive comparative analysis of SVC and STATCOM, Electric Power Automation Equipment, 27, 12, 61-64 (2007), in Chinese
[27] Tan, Y. L., Analysis of line compensation by shunt-connected FACTS controllers: a comparison between SVC and STATCOM, IEEE Power Engineering Review, 19, 8, 57-58 (1999) · doi:10.1109/39.780992
[28] Ye, Y.; Kazerani, M.; Quintana, V. H., Current-source converter based STATCOM: modeling and control, IEEE Transactions on Power Delivery, 20, 2, 795-800 (2005) · doi:10.1109/tpwrd.2004.837838
[29] Dong Shen, D.; Lehn, P. W., Modeling, analysis, and control of a current source inverter-based STATCOM, IEEE Transactions on Power Delivery, 17, 1, 248-253 (2002) · doi:10.1109/61.974214
[30] Fang, J.; Yao, W.; Chen, Z.; Wen, J.; Cheng, S., Design of anti-windup compensator for energy storage-based damping controller to enhance power system stability, IEEE Transactions on Power Systems, 29, 3, 1175-1185 (2014) · doi:10.1109/tpwrs.2013.2291378
[31] Payam, A. F.; Hashemnia, M. N.; Fai, J., Robust DTC control of doubly-fed induction machines based on input-output feedback linearization using recurrent neural networks, Journal of Power Electronics, 11, 5, 719-725 (2011) · doi:10.6113/jpe.2011.11.5.719
[32] Li, H.; Zhang, B. L.; Zhou, R. G., The design of excitation controller for generator by means of the method of direct linearization over wide range, Proceedings of the CSEE, 12, 2, 35-41 (1992), in Chinese
[33] Hmed, A. B.; Bakir, T.; Sakly, A., Input-output feedback linearization control (IOFLC) for muscle force control by functional electrical stimulation, Proceedings of the 26th Mediterranean Conference on Control and Automation, IEEE
[34] Zhang, C. P.; Lin, F.; Song, W. C., Nonlinear control of induction motors based on direct feedback linearization, Proceedings of the CSEE, 23, 2, 99-102 (2003), in Chinese
[35] Li, P. H.; Wang, J.; Wu, F., Sub-synchronous control interaction mitigation for DFIGs by sliding mode control strategy based on feedback linearization, Transactions on China Electrotechnical Society, 34, 17, 3661-3671 (2019), in Chinese
[36] Le, J. Y.; Xie, Y. X.; Hong, Q. Z., Sliding mode control of boost converter based on exact feedback linearization, Proceedings of the CSEE, 31, 30, 16-23 (2011), in Chinese
[37] Gong, H.; Wang, Y. H.; Li, Y., An input-output feedback linearized sliding mode control for D-STATCOM, Automation of Electric Power Systems, 40, 5, 102-108 (2016), in Chinese
[38] Santi, E.; Monti, A.; Li, D., Synergetic control for power electronics applications: a comparison with the sliding mode approach, Journal of Circuits, Systems, and Computers, 13, 4, 737-760 (2004) · doi:10.1142/s0218126604001520
[39] Akkari, E.; Chevallier, S.; Boillereaux, L., Global linearizing control of MIMO microwave-assisted thawing, Control Engineering Practice, 17, 1, 39-47 (2009) · doi:10.1016/j.conengprac.2008.05.006
[40] Ademoye, T.; Feliachi, A., Reinforcement learning tuned decentralized synergetic control of power systems, Electric Power Systems Research, 86, 1, 34-40 (2012) · doi:10.1016/j.epsr.2011.11.024
[41] Jiang, Z.; Dougal, R. A., Synergetic control of power converters for pulse current charging of advanced batteries from a fuel cell power source, IEEE Transactions on Power Electronics, 19, 4, 1140-1150 (2004) · doi:10.1109/tpel.2004.830044
[42] Djennoune, S.; Bettayeb, M., Optimal synergetic control for fractional-order systems, Automatica, 49, 7, 2243-2249 (2013) · Zbl 1364.93184 · doi:10.1016/j.automatica.2013.04.007
[43] Santi, E.; Monti, A.; Donghong Li, D. H.; Proddutur, K.; Dougal, R. A., Synergetic control for DC-DC boost converter: implementation options, IEEE Transactions on Industry Applications, 39, 6, 1803-1813 (2003) · doi:10.1109/tia.2003.818967
[44] Zhao, P.; Yao, W.; Wen, J.; Jiang, L.; Wang, S.; Cheng, S., Improved synergetic excitation control for transient stability enhancement and voltage regulation of power systems, International Journal of Electrical Power & Energy Systems, 68, 1, 44-51 (2015) · doi:10.1016/j.ijepes.2014.12.056
[45] Jiang, Z., Design of a nonlinear power system stabilizer using synergetic control theory, Electric Power Systems Research, 79, 6, 855-862 (2009) · doi:10.1016/j.epsr.2008.11.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.