×

An explicit stabilized Runge-Kutta-Legendre super time-stepping scheme for the Richards equation. (English) Zbl 1512.76070

Summary: We solve one-dimensional Kirchhof transformed Richards equation numerically using finite difference method with various time-stepping schemes, forward in time central in space (FTCS), backward in time central in space (BTCS), Crank-Nicolson (CN), and a stabilized Runge-Kutta-Legendre super time-stepping (RKL), and compare their performances.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
76S05 Flows in porous media; filtration; seepage
Full Text: DOI

References:

[1] Richards, L. A., Capillary conduction of liquids through porous mediums, Physics, 1, 5, 318-333 (1931) · Zbl 0003.28403 · doi:10.1063/1.1745010
[2] Van Genuchten, M. T.; Sudicky, E. A., Recent Advances in Vadose Zone Flow and Transport Modeling, Vadose Zone Hydrology Cutting across Disciplines, 155-193 (1999), Oxford, UK: Oxford University Press, Oxford, UK
[3] Celia, M. A.; Bouloutas, E. T.; Zarba, R. L., A general mass-conservative numerical solution for the unsaturated flow equation, Water Resources Research, 26, 7, 1483-1496 (1990) · doi:10.1029/wr026i007p01483
[4] Berganaschi, L.; Putti, M., Mixed finite elements and Newton-type militarizations for the solution of the Richards equations, International Journal for Numerical Methods in Engineering, 45, 1025-1046 (1999) · Zbl 0943.76047 · doi:10.1002/(SICI)1097-0207(19990720)45:8<1025::AID-NME615>3.0.CO;2-G
[5] Eymard, R.; Gutnic, M.; Hilhorst, D., The finite volume method for richard equation, Computational Geosciences, 3, 3/4, 259-294 (1999) · Zbl 0953.76060 · doi:10.1023/a:1011547513583
[6] Gottardi, G.; Venutelli, M., Richards: computer program for the numerical simulation of one-dimensional infiltration into unsaturated soil, Computers & Geosciences, 19, 9, 1239-1266 (1993) · doi:10.1016/0098-3004(93)90028-4
[7] Haverkamp, R.; Vauclin, M.; Touma, J.; Wierenga, P. J.; Vachaud, G., A comparison of numerical simulation models for one-dimensional infiltration, Soil Science Society of America Journal, 41, 2, 285-294 (1997) · doi:10.2136/sssaj1977.03615995004100020024x
[8] Liu, F.; Fukumoto, Y.; Zhao, X., A linearized finite difference scheme for the Richards equation under variable-flux boundary conditions, Journal of Scientific Computing, 83, 2-21 (2020) · Zbl 1433.76113 · doi:10.1007/s10915-020-01196-y
[9] Zambra, C. E.; Dumbser, M.; Toro, E. F.; Moraga, N. O., A novel numerical method of high-order accuracy for flow in unsaturated porous media, International Journal for Numerical Methods in Engineering, 89, 2, 227-240 (2012) · Zbl 1242.76188 · doi:10.1002/nme.3241
[10] Kavetsky, D.; Binning, P.; Sloan, S. W., Adaptive time stepping and error control in a mass conservative numerical solution of the mixed form of Richards equation, Advances in Water Resources, 24, 595-605 (2001) · doi:10.1016/S0309-1708(00)00076-2
[11] Radu, F. A.; List, F., A Study on iterative methods for solving Richards equation, Computers and Geo-Sciences, 20, 341-353 (2016) · Zbl 1396.65143 · doi:10.1007/s10596-016-9566-3
[12] Egid, N.; Gioia, E.; Maponi, P.; Spadoni, L., A numerical solution of Richards equation: a simple method adaptable in parallel computing, International Journal of Computer Mathematics, 97, 1-18 (2018) · Zbl 1480.65208 · doi:10.1080/00207160.2018.1444160
[13] Meyer, C. D.; Balsara, D. S.; Aslam, T. D., A stabilized runge-kutta-legendre method for explicit super-time-stepping of parabolic and mixed equations, Journal of Computational Physics, 257, 594-626 (2014) · Zbl 1349.65520 · doi:10.1016/j.jcp.2013.08.021
[14] Thomas, J. W., Numerical Partial Differential Equations: Finite Difference Methods (2010), New York, NY, USA: Springer, New York, NY, USA
[15] Alexiades, V.; Amiez, G.; Gremaud, P.-A., Super-time-stepping acceleration of explicit schemes for parabolic problems, Communications in Numerical Methods in Engineering, 12, 1, 31-42 (1996) · Zbl 0848.65061 · doi:10.1002/(sici)1099-0887(199601)12:1<31::aid-cnm950>3.0.co;2-5
[16] Gremaud, P.; Khanal, H., Super time-stepping schemes for conduction-radiation heat transfer problem, Neural, Parallel and Scientific Computing, 25, 457-468 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.