×

Immersed-boundary methods for simulating human motion events. (English) Zbl 1512.76061

Roy, Somnath (ed.) et al., Immersed boundary method. Development and applications. Singapore: Springer. Comput. Methods Eng. Sci., 395-419 (2020).
Summary: The further development of an immersed-boundary method for general flow applications is outlined in this paper. A cell-classification procedure based on a signed distance to the nearest surface is used to separate the computational domain into cells outside the immersed object (field cells), cells outside but adjacent to the immersed object (band cells), and cells within the immersed object (interior cells). Interpolation methods based on laminar/turbulent boundary layer theory are used to prescribe the flow properties within the band cells. The method utilizes a decomposition of the velocity field near embedded surfaces into normal and tangential components, with the latter handled using power-law or log-law interpolations to mimic the energizing effects of turbulent boundary layers. Procedures for generating motion events using rendering technologies are described as methods for directly embedding sequences of stereo-lithography files representing frames of motion as immersed objects in the computational domain. Extensions of the methodology to zero-thickness immersed surfaces are discussed. Described applications center on human motion events, with a focus on understanding the effect of human motion on agent transport in confined environments.
For the entire collection see [Zbl 1470.76005].

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76M99 Basic methods in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
76F40 Turbulent boundary layers
Full Text: DOI

References:

[1] Bærentzen JA, Aanæs H (2005) Signed distance computation using the angle weighted pseudonormal. IEEE T Vis Comp Graph 11(3):243-253 · doi:10.1109/TVCG.2005.49
[2] Baurle RA, Tam CJ, Edwards JR, Hassan HA (2003) Hybrid simulation approach for cavity flows: blending, algorithm, and boundary treatment issues. AIAA J 41:1463-1480 · doi:10.2514/2.2129
[3] Choi J-I, Edwards JR (2008) Large eddy simulation and zonal modeling of human-induced contaminant transport. Indoor Air 18:233-249 · doi:10.1111/j.1600-0668.2008.00527.x
[4] Choi J-I, Edwards JR (2012) Large-eddy simulation of human-induced contaminant transport in room compartments. Indoor Air 22:77-87 · doi:10.1111/j.1600-0668.2011.00741.x
[5] Choi J-I, Oberoi RC, Edwards JR, Rosati JA (2007) An immersed boundary method for complex incompressible flows. J Comput Phys 224:757-784 · Zbl 1123.76351 · doi:10.1016/j.jcp.2006.10.032
[6] Choi J-I, Edwards JR, Rosati JA, Eisner AD (2012) Large eddy simulation of particle re-suspension during a footstep. Aerosol Sci Technol 46(7):767-780 · doi:10.1080/02786826.2011.631613
[7] Chorin AJ (1967) A numerical method for solving incompressible Navier-Stokes equations. J Comput Phys 2:12-26 · Zbl 0149.44802 · doi:10.1016/0021-9991(67)90037-X
[8] Colella P, Woodward PR (1984) The piecewise parabolic method (PPM) for gas-dynamical simulations. J Comput Phys 54:174-201 · Zbl 0531.76082 · doi:10.1016/0021-9991(84)90143-8
[9] Crowe CT, Troutt TR, Chung JN (1996) Numerical models for two-phase turbulent flows. Annu Rev Fluid Mech 28:11-43 · doi:10.1146/annurev.fl.28.010196.000303
[10] Edwards JR, Liou M-S (1998) Low-diffusion flux-splitting methods for flows at all speeds. AIAA J 36:1610-1617 · doi:10.2514/2.587
[11] Edwards JR, Choi J-I, Ghosh S, Gieseking DA, Eischen JD (2010) An immersed boundary method for general flow applications. In: FEDSM-ICNMM2010-31097, ASME 2010 3rd joint US-European fluids engineering summer meeting
[12] Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J (2000) Combined immersed boundary/finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161:35-60 · Zbl 0972.76073 · doi:10.1006/jcph.2000.6484
[13] Ghosh S, Choi J-I, Edwards JR (2010a) Numerical simulation of effects of micro vortex generators using immersed boundary methods. AIAA J 48(1):92-103 · doi:10.2514/1.40049
[14] Ghosh S, Choi J-I, Edwards JR (2010b) Simulation of shock/boundary layer interactions with bleed using immersed boundary method. J Propul Power 26(2):203-214 · doi:10.2514/1.45297
[15] Ghosh S, Choi J-I, Edwards JR (2012) Numerical simulation of the effects of mesoflaps in controlling shock/boundary layer interactions. J Propul Power 28(5):955-970 · doi:10.2514/1.B34297
[16] Gilmanov A, Sotiropoulus F, Balaras E (2003) A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids. J Computat Phys 191:660-669 · Zbl 1134.76406 · doi:10.1016/S0021-9991(03)00321-8
[17] Gouraud H (1971) Continuous shading of curved surfaces. IEEE T Comp 20(6):623-629 · Zbl 0219.68056 · doi:10.1109/T-C.1971.223313
[18] Guéziec A (2001) Meshsweeper: dynamic point-to-polygonal-mesh distance and applications. IEEE T Vis Comp Graph 7(1):47-61 · doi:10.1109/2945.910820
[19] Hoff KE, Culver T, Keyser J, Lin M, Manocha D (1999) Fast computation of generalized voronoi diagrams using a graphics hardware. In: Proceedings of the SIGGRAPH’99, pp 277-285
[20] Juricek B et al (2014) Volatile organic compound odor signature modeling. Phase I SBIR Final Report, Air Force Contract FA8650-13-M-6449
[21] Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20:359-392 · Zbl 0915.68129 · doi:10.1137/S1064827595287997
[22] Linhart J (1990) A quick point-in-polyhedron test. Comput Graph 14(3):445-448 · doi:10.1016/0097-8493(90)90066-7
[23] Mittal R, Iaccarino G (2005) Immersed boundary methods. Ann Rev Fluid Mech 37:239-261 · Zbl 1117.76049 · doi:10.1146/annurev.fluid.37.061903.175743
[24] Mohd-Yosuf J (1997) Combined immersed boundary/B-spline methods for the simulation of flow in complex geometries, Ann Res Briefs CTR 317-328
[25] Neaves MD, Edwards JR (2006) All-speed time-accurate underwater projectile calculations using a preconditioning algorithm. ASME J Fluids Eng 128:284-296 · doi:10.1115/1.2169816
[26] Oberoi RC, Choi J-I, Edwards JR, Rosati JA, Thornburg J, Rodes CE (2010) Human-induced particle re-suspension in a room. Aerosol Sci Technol 44(3):216-229 · doi:10.1080/02786820903530852
[27] Payne BA, Toga AW (1992) Distance field manipulation of surface models. Comp Graph Appl 12(1):65-71 · doi:10.1109/38.135885
[28] Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10:220-252 · Zbl 0244.92002 · doi:10.1016/0021-9991(72)90065-4
[29] Smagorinsky J (1963) General circulation experiments with primitive equations, the basic experiment. Mon Weather Rev 91:99-164 · doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
[30] Verzicco R, Mohd-Yusof J, Orlandi P, Haworth D (2000) LES in complex geometries using boundary body forces. AIAA J 38:427-433 · doi:10.2514/2.1001
[31] Walz A (1969) Boundary layers of flow and temperature (English translation), MIT Press, Cambridge
[32] Wesseling P (1995) Introduction to multigrid methods, NASA CR · Zbl 0760.65092
[33] Arya S, Mount DM, Netanyahu NS, Silverman R, Wu AY (1998) An optimal algorithm for approximate nearest-neighbor searching. J ACM 45:891-923 · Zbl 1065.68650 · doi:10.1145/293347.293348
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.