×

Free vibration investigations of rotating FG beams resting on elastic foundation with initial geometrical imperfection in thermal environments. (English) Zbl 1512.74039

Summary: In practical operations of mechanical structures, it is not difficult to meet some large components such as helicopter rotors, gas turbine blades of marine engines, and rotating railway bridges, where these elements can be seen as beam models rotating around one fixed axis. Therefore, mechanical explorations of these structures with and without the effect of temperature will guide the design, manufacture, and use of them in practice. This is the first paper that uses the shear deformation theory-type hyperbolic sine functions and the finite element method to analyze the free vibration response of rotating FGM beams with initial geometrical imperfections resting on elastic foundations considering the effect of temperature. The material properties are assumed to be varied in the thickness direction of the beam based on the power law function and temperature changes The proposed theory and mathematical model are verified by comparing the results with other exact solutions. The numerical investigations have taken into account some geometrical and material parameters to evaluate the effects on the vibration behavior of the structure such as the rotational speed, temperature, as well as initial geometrical imperfections. The drawn comments have numerous scientific and practical implications for rotating beam structures.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
Full Text: DOI

References:

[1] Reddy, J. N., Free vibration analysis of functionally graded ceramic-metal plates, Analysis and Design of Plated Structures, 1, 293-321 (2007) · doi:10.1533/9781845692292.293
[2] Ning, Z.; Tahir, K.; Haomin, G.; Shaoshuai, S.; Wei, Z.; Weiwei, Z., Functionally graded materials: an overview of stability, buckling, and free vibration analysis, Advances in Materials Science and Engineering, 2019 (2019) · doi:10.1155/2019/1354150
[3] Thom, D. V.; Duc, D. H.; Minh, P. V.; Tung, N. S., Finite element modelling for free vibration response of cracked stiffened FGM plates, Vietnam Journal of Science and Technology, 58, 1, 119-129 (2020) · doi:10.15625/2525-2518/58/1/14278
[4] Do, V. T.; Nguyen, D. K.; Duc, N. D.; Doan, D. H.; Bui, Q. T., Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory, Thin-Walled Structures, 119, 687-699 (2017) · doi:10.1016/j.tws.2017.07.022
[5] Nguyen, H.-N.; Tan, T. C.; Luat, D. T.; Phan, V.-D.; Thom, D. V.; Minh, P. V., Research on the buckling behavior of functionally graded plates with stiffeners based on the third-order shear deformation theory, Materials, 12, 8, 1262 (2019) · doi:10.3390/ma12081262
[6] Gunjal, S. K.; Dixit, U. S., Vibration analysis of shape-optimized rotating cantilever beams, Engineering Optimization, 39, 1, 105-123 (2007) · doi:10.1080/03052150600959732
[7] Pradhan, S. C.; Murmu, T., Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever, Physica E: Low-Dimensional Systems and Nanostructures, 42, 7, 1944-1949 (2010) · doi:10.1016/j.physe.2010.03.004
[8] Li, L.; Zhang, D. G.; Zhu, W. D., Free vibration analysis of a rotating hub-functionally graded material beam system with the dynamic stiffening effect, Journal of Sound and Vibration, 333, 5, 1526-1541 (2014) · doi:10.1016/j.jsv.2013.11.001
[9] Amir, M. D. S.; Mehdi, B. J.; Dehrouyeh, M., On size-dependent lead-lag vibration of rotating microcantilevers, International Journal of Engineering Science, 101, 50-63 (2016) · Zbl 1423.74385 · doi:10.1016/j.ijengsci.2015.12.009
[10] Jung-Woo, L.; Jung-Youn, L., In-plane bending vibration analysis of a rotating beam with multiple edge cracks by using the transfer matrix method, Meccanica, 52, 1143-1157 (2017) · Zbl 1383.74035 · doi:10.1007/s11012-016-0449-4
[11] Das, D., Free vibration and buckling analyses of geometrically non-linear and shear-deformable FGM beam fixed to the inside of a rotating rim, Composite Structures, 179, 628-645 (2017) · doi:10.1016/j.compstruct.2017.07.051
[12] Xu, X.; Han, Q.; Chu, F.; Parker, R. G., Vibration suppression of a rotating cantilever beam under magnetic excitations by applying the magnetostrictive material, Journal of Intelligent Material Systems and Structures, 30, 4, 576-592 (2019) · doi:10.1177/1045389x18818768
[13] Alireza, B.; Cai, X. Y., Vibration analysis of rotating rods based on the nonlocal elasticity theory and coupled displacement field, Microsystem Technologies, 25, 1077-1085 (2019) · doi:10.1007/s00542-018-4047-3
[14] Li, L.; Liao, W.-H.; Zhang, D.; Zhang, Y., Vibration control and analysis of a rotating flexible FGM beam with a lumped mass in temperature field, Composite Structures, 208, 244-260 (2019) · doi:10.1016/j.compstruct.2018.09.070
[15] Dejin, C.; Kai, F.; Shijie, Z., Flapwise vibration analysis of rotating composite laminated timoshenko microbeams with geometric imperfection based on a re-modified couple stress theory and isogeometric analysis, European Journal of Mechanics-A/Solids, 76, 25-35 (2019) · Zbl 1470.74033 · doi:10.1016/j.euromechsol.2019.03.002
[16] Atanasov, M. S.; Stojanović, V., Nonlocal forced vibrations of rotating cantilever nano-beams, European Journal of Mechanics-A/Solids, 79 (2020) · Zbl 1484.74028 · doi:10.1016/j.euromechsol.2019.103850
[17] Jalaei, M. H.; Civalek, Ӧ., On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam, International Journal of Engineering Science, 143, 14-32 (2019) · Zbl 1476.82018 · doi:10.1016/j.ijengsci.2019.06.013
[18] Demir, Ç.; Civalek, Ö., On the analysis of microbeams, International Journal of Engineering Science, 121, 14-33 (2017) · Zbl 1423.74470 · doi:10.1016/j.ijengsci.2017.08.016
[19] Akgöz, B.; Civalek, Ö., A novel microstructure-dependent shear deformable beam model, International Journal of Mechanical Sciences, 99, 10-20 (2015) · doi:10.1016/j.ijmecsci.2015.05.003
[20] Hanten, L.; Giunta, G.; Belouettar, S.; Salnikov, V., Free vibration analysis of fibre-metal laminated beams via hierarchical one-dimensional models, Mathematical Problems in Engineering, 2018 (2018) · Zbl 1426.74151 · doi:10.1155/2018/2724781
[21] Moustafa, G.; Hayat, S.; Fouad, B., Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation, Steel and Composite Structures, 38, 1, 1-15 (2021) · doi:10.12989/scs.2021.38.1.001
[22] Abdelkrim, R.; Abdelbaki, C.; Abdelmoumen, A. B., Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory, Steel and Composite Structures, 37, 6, 695-709 (2020) · doi:10.12989/scs.2020.37.6.695
[23] Noureddine, B.; Mohamed, Z.; Abdelmoumen, A. B., Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation, Computers and Concrete, 26, 3, 213-226 (2020) · doi:10.12989/cac.2020.26.3.213
[24] Mohamed, R.; Kouider, H. B.; Abdelhakim, K., A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions, Geomechanics and Engineering, 22, 2, 119-132 (2020) · doi:10.12989/gae.2020.22.2.119
[25] Fouad, B.; Abdelmoumen, A. B.; Abdeldjebbar, T., Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation, Computers and Concrete, 25, 6, 485-495 (2020) · doi:10.12989/cac.2020.25.6.485
[26] Sara, C. C.; Abdelhakim, K.; Abdelmoumen, A. B., A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin\’s approach, Geomechanics and Engineering, 21, 5, 471-487 (2020) · doi:10.12989/gae.2020.21.5.471
[27] Salah, R.; Abdelmoumen, A. B.; Abdelhakim, B., Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations, Computers and Concrete, 25, 4, 311-325 (2020) · doi:10.12989/cac.2020.25.4.311
[28] Miloud, K.; Abdelhakim, K.; Abdelmoumen, A. B., A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: bending and free vibration analysis, Computers and Concrete, 25, 1, 37-57 (2020) · doi:10.12989/cac.2020.25.1.037
[29] Abdelouahed, T.; Al-Dulaijan, S. U.; Al-Osta, M. A., A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation, Steel and Composite Structures, 34, 4, 511-524 (2020) · doi:10.12989/scs.2020.34.4.511
[30] Farouk, Y. A.; Mustapha, M.; Abdelmoumen, A. B., Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT, Computers and Concrete, 24, 4, 347-367 (2019) · doi:10.12989/cac.2019.24.4.347
[31] Hichem, B.; Mahmoud, M. S.; Abdelbaki, C., Influence of porosity on thermal buckling behavior of functionally graded beams, Smart Structures and Systems, 27, 4, 719-728 (2021) · doi:10.12989/sss.2021.27.4.719
[32] Ehsan, A.; Mohammad, K.; Soleimani-Javid, Z.; Saeed, A.; Abdelouahed, T., Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory, Engineering With Computers (2021) · doi:10.1007/s00366-021-01382-y
[33] Al-Furjan, M. S. H.; Mostafa, H.; Alireza, R., Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM, Engineering With Computers (2020) · doi:10.1007/s00366-020-01144-2
[34] Hakima, M.; Abdelmoumen, A. B.; Houari, H., Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory, Advances in Nano Research, 8, 4, 293-305 (2020) · doi:10.12989/anr.2020.8.4.293
[35] Abderrafik, B.; Belhadj, B.; Mohamed, B., A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates, Smart Structures and Systems, 25, 2, 197-218 (2020) · doi:10.12989/sss.2020.25.2.197
[36] Yu, T.; Bui, T. Q.; Yin, S., On the thermal buckling analysis of functionally graded plates with internal defects using extended isogeometric analysis, Composite Structures, 136, 684-695 (2016) · doi:10.1016/j.compstruct.2015.11.002
[37] Dat, P. T.; Thom, D. V.; Luat, D. T., Free vibration of functionally graded sandwich plates with stiffeners based on the third-order shear deformation theory, Vietnam Journal of Mechanics, 38, 2, 103-122 (2016) · doi:10.15625/0866-7136/38/2/6730
[38] Duc, N. D.; Trinh, T. D.; Van Do, T.; Doan, D. H., On the buckling behavior of multi-cracked FGM plates, Proceedings of the International Conference on Advances in Computational Mechanics 2017 · doi:10.1007/978-981-10-7149-2_3
[39] Do, V. T.; Doan, D. H.; Duc, N. D.; Bui, T. Q., Phase-field thermal buckling analysis for cracked functionally graded composite plates considering neutral surface, Composite Structures, 182, 542-548 (2017) · doi:10.1016/j.compstruct.2017.09.059
[40] Tinh, Q. B.; Thom, V. D.; Lan, H. T. T., On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory, Composites Part B: Engineering, 92, 218-241 (2016) · doi:10.1016/j.compositesb.2016.02.048
[41] Soldatos, K. P., A transverse shear deformation theory for homogeneous monoclinic plates, Acta Mechanica, 94, 3-4, 195-220 (1992) · Zbl 0850.73130 · doi:10.1007/bf01176650
[42] Huu-Tai, T.; Dong-Ho, C., Finite element formulation of various four unknown shear deformation theories for functionally graded plates, Finite Elements in Analysis and Design, 75, 50-61 (2013) · Zbl 1368.74066 · doi:10.1016/j.finel.2013.07.003
[43] Timoshenko, S. P.; Gere, J. M., Theory of Elastic Stability (1989), Mineola, NY, USA: Dover Publications, Mineola, NY, USA
[44] Avcar, M.; Waleed, K. M. M., Free vibration of functionally graded beams resting on Winkler-Pasternak foundation, Arabian Journal of Geosciences, 11, 232 (2018) · doi:10.1007/s12517-018-3579-2
[45] Ghayesh, M. H.; Amabili, M., Coupled longitudinal-transverse behaviour of a geometrically imperfect microbeam, Composites Part B: Engineering, 60, 371-377 (2014) · doi:10.1016/j.compositesb.2013.12.030
[46] Wright, A. D.; Smith, C. E.; Thresher, R. W.; Wang, J. L. C., Vibration modes of centrifugaily stiffened beams, Journal of Applied Mechanics, 49, 1, 197-202 (1982) · Zbl 0482.73041 · doi:10.1115/1.3161966
[47] Yoo, H. H.; Shin, S. H., Vibration analysis of rotating cantilever beams, Journal of Sound and Vibration, 212, 5, 807-828 (1998) · doi:10.1006/jsvi.1997.1469
[48] Ebrahimi, F.; Salari, E., Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions, Composites Part B: Engineering, 78, 272-290 (2015) · doi:10.1016/j.compositesb.2015.03.068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.