×

The Melnikov criterion of instability for random rocking of a rigid block with a fractional derivative element. (English) Zbl 1512.70008

Summary: This paper discusses the problem of the cumulative influence of fractional dissipation and external noise on escape of a rigid block from a prescribed set of rocking oscillations. For simplicity, the dynamics of a weakly dissipative slender block affected by low energy noise is considered. Under these assumptions, the generic motion is depicted by the linearized equation of an undamped block with the well-known periodic vibro-impact solution. The stochastic Melnikov criterion based on the generic solution allows calculating the upper bound of escape probability of the structure in the presence of fractional dissipation of the Caputo type. The analytical results demonstrate an explicit dependence of escape probability on the fractional dissipation parameters.

MSC:

70E50 Stability problems in rigid body dynamics
70L10 Stochastic geometric mechanics
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Housner, G., The behavior of inverted pendulum structures during earthquakes, Bull. Seismol. Soc. Am., 53, 403-417 (1963)
[2] Acary, V.; Brogliato, B., Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics (2008), Springer Science & Business Media: Springer Science & Business Media New York · Zbl 1173.74001
[3] Babitsky, V. I., Theory of Vibro-Impact Systems and Applications (1998), Springer: Springer Berlin · Zbl 1041.70001
[4] Spanos, P. D.; Di Matteo, A.; Pirrotta, A.; Di Paola, M., Rocking of rigid block on nonlinear flexible foundation, Int. J. Non-Linear Mech., 94, 362-374 (2017)
[5] Di Matteo, A.; Pirrotta, A.; Gebel, E.; Spanos, P. D., Analysis of block random rocking on nonlinear flexible foundation, Probab. Eng. Mech., 59, Article 103017 pp. (2020)
[6] ElGawady, M.; Ma, Q.; Butterworth, J.; Ingham, J., Effects of interface material on the performance of free rocking blocks, Earthq. Eng. Struct. Dyn., 40, 375-392 (2011)
[7] Spanos, P. D.; Di Matteo, A.; Cheng, Y.; Pirrotta, A.; Li, J., Galerkin scheme-based determination of survival probability of oscillators with fractional derivative elements, J. Appl. Mech., 83, Article 121003 pp. (2016)
[8] Spanos, P. D.; Malara, G., Nonlinear vibrations of beams and plates with fractional derivative elements subject to combined harmonic and random excitations, Probab. Eng. Mech., 59, Article 103043 pp. (2020)
[9] Hinze, M.; Schmidt, A.; Leine, R. I., The direct method of Lyapunov for nonlinear dynamical systems with fractional damping, Nonlinear Dynam., 102, 2017-2037 (2020) · Zbl 1517.34096
[10] Diethelm, K., The Analysis of Fractional Differential Equations: An Application-Oriented Exposition using Differential Operators of Caputo Type (2010), Springer: Springer Berlin · Zbl 1215.34001
[11] Podlubny, I., An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications (1998), Academic Press: Academic Press Cambridge MA · Zbl 0922.45001
[12] Bruhn, B.; Koch, B. P., Heteroclinic bifurcations and invariant manifolds in rocking block dynamics, Z. Naturf. a, 46, 481-490 (1991) · Zbl 0799.73058
[13] Yurchenko, D.; Burlon, A.; Di Paola, M.; Failla, G.; Pirrotta, A., Stochastic response of a fractional vibroimpact system, Procedia Eng., 199, 1086-1091 (2017)
[14] Yurchenko, D.; Burlon, A.; Di Paola, M.; Failla, G.; Pirrotta, A., Approximate analytical mean-square response of an impacting stochastic system oscillator with fractional damping, ASCE-ASME J. Risk Uncertain. Eng. Syst. B, 3, Article 030903 pp. (2017)
[15] Yang, Y. G.; Xu, W.; Yang, G., Bifurcation analysis of a noisy vibro-impact oscillator with two kinds of fractional derivative elements, Chaos, 28, Article 043106 pp. (2018) · Zbl 1390.34186
[16] Sun, Y. H.; Yang, Y. G.; Hong, L.; Xu, W., Stochastic bifurcations of a fractional-order vibro-impact oscillator subjected to colored noise excitation, Int. J. Bifurcation Chaos, 31, Article 2150177 pp. (2021) · Zbl 1480.34007
[17] Yang, Y. G.; Sun, Y. H.; Xu, W., Stochastic bifurcation analysis of a friction-damped system with impact and fractional derivative damping, Nonlinear Dynam., 105, 3131-3138 (2021)
[18] Sasso, M.; Palmieri, G.; Amodio, D., Application of fractional derivative models in linear viscoelastic problems, Mech. Time-Depend. Mater., 15, 367-387 (2011)
[19] Nutting, P. G., A new general law deformation, J. Frankin Inst., 191, 678-685 (1921)
[20] Roberts, J. B.; Spanos, P. D., Random Vibration and Statistical Linearization (2003), Dover Publications Inc · Zbl 1073.70001
[21] Spanos, P. D.; Koh, A. S., Analysis of block random rocking, Soil Dyn. Earthq. Eng., 5, 178-183 (1986)
[22] Iyengar, R. N.; Manohar, C. S., Rocking response of rectangular rigid blocks under random noise base excitations, Int. J. Non-Linear Mech., 26, 885-892 (1991)
[23] Freidlin, M. I.; Wentzell, A. D., Random Perturbations of Dynamical Systems (1984), Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 0522.60055
[24] Roberts, J. B.; Spanos, P. D., Stochastic averaging: An approximate method of solving random vibration problems, Int. J. Non-Linear Mech., 21, 111-134 (1986) · Zbl 0582.73077
[25] Namachchivaya, N. S.; Park, J. H., Stochastic dynamics of impact oscillators, J. Appl. Mech., 72, 862-870 (2005) · Zbl 1111.74572
[26] Kovaleva, A., Optimal Control of Mechanical Oscillations (2013), Springer: Springer Berlin
[27] Melnikov, V. K., On the stability of the center for time-periodic perturbations, Trans. Moscow Math. Soc., 12, 1-57 (1963) · Zbl 0135.31001
[28] Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos (1997), Springer: Springer Berlin
[29] Simiu, E., Chaotic Transitions in Deterministic and Stochastic Dynamical Systems. Applications of Melnikov Processes in Engineering, Physics and Neuroscience (2014), Princeton University Press: Princeton University Press Princeton
[30] Granados, A.; Hogan, S. J.; Seara, T. M., The Melnikov method and subharmonic orbits in a piecewise smooth system, SIAM J. Appl. Dyn. Syst., 11, 801-830 (2012) · Zbl 1262.37028
[31] Granados, A.; Hogan, S. J.; Seara, T. M., The scattering map in two coupled piecewise-smooth systems, with numerical application to rocking blocks, Physica D, 269, 1-20 (2014) · Zbl 1286.37060
[32] Lenci, S.; Rega, G., Heteroclinic bifurcations and optimal control in the nonlinear rocking dynamics of generic and slender rigid blocks, Int. J. Bifurcation Chaos, 15, 1901-1918 (2005) · Zbl 1092.70519
[33] Lenci, S.; Rega, G., A dynamical systems approach to the overturning of rocking blocks, Chaos Solitons Fractals, 28, 527-542 (2006) · Zbl 1084.70003
[34] Battelli, F.; Fečkan, M., Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems, Physica D, 241, 1962-1975 (2012)
[35] Pedersen, M. G.; Sørensen, M. P., The effect of noise on beta-cell burst period, SIAM J. Appl. Math., 67, 530-542 (2007) · Zbl 1110.37066
[36] Lin, H.; Yim, S. C.S., Deterministic and stochastic analyses of chaotic and overturning responses of a slender rocking object, Nonlinear Dynam., 11, 83-106 (1996)
[37] Kovaleva, A., The Melnikov criterion of instability for random rocking dynamics of rigid block with an attached secondary structure, Nonlinear Anal. RWA, 11, 472-479 (2010) · Zbl 1197.74057
[38] Kovaleva, A., Stability and control of random rocking motion of a multidimensional structure: the Melnikov approach, Nonlinear Dynam., 59, 309-317 (2010) · Zbl 1183.70020
[39] Kovaleva, A., Random rocking dynamics of a multidimensional structure, (Ibrahim, R. A.; Babitsky, V. I.; Okuma, M., Vibro-Impact Dynamics of Ocean Systems and Related Problems (2009), Springer: Springer Berlin), 149-160
[40] Caputo, M., Linear model of dissipation whose Q is almost frequency independent - II, Geophys. J. R. Astron. Soc., 13, 529-539 (1967)
[41] Korn, G. A.; Korn, T. M., Mathematical Handbook for Scientists and Engineers (2013), Dover: Dover New York · Zbl 0121.00103
[42] Rosenwasser, E. N.; Lampe, B., Multivariable Computer-Controlled Systems: A Transfer Function Approach (2006), Springer: Springer Berlin · Zbl 1123.93067
[43] Attaway, D. C., MATLAB: A Practical Introduction to Programming and Problem Solving (2018), Elsevier
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.