×

A numerical approach for the analytical solution of the fourth-order parabolic partial differential equations. (English) Zbl 1512.65240

MSC:

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35K25 Higher-order parabolic equations
35B20 Perturbations in context of PDEs
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
35Q74 PDEs in connection with mechanics of deformable solids

References:

[1] Khan, H.; Liao, S.-J.; Mohapatra, R.; Vajravelu, K., An analytical solution for a nonlinear time-delay model in biology, Communications in Nonlinear Science and Numerical Simulation, 14, 7, 3141-3148 (2009) · Zbl 1221.65204 · doi:10.1016/j.cnsns.2008.11.003
[2] Gu, Y.; Liao, W.; Zhu, J., An efficient high-order algorithm for solving systems of 3-D reaction- diffusion equations, Journal of Computational and Applied Mathematics, 155, 1, 1-17 (2003) · Zbl 1019.65065 · doi:10.1016/S0377-0427(02)00889-0
[3] Zhu, Q.; Deng, S.; Chen, Y., Periodical pressure-driven electrokinetic flow of power-law fluids through a rectangular microchannel, Journal of Non-Newtonian Fluid Mechanics, 203, 38-50 (2014) · doi:10.1016/j.jnnfm.2013.10.003
[4] Zhang, H.; Han, X.; Yang, X., Quintic B-spline collocation method for fourth order partial integro- differential equations with a weakly singular kernel, Applied Mathematics and Computation, 219, 12, 6565-6575 (2013) · Zbl 1286.65188 · doi:10.1016/j.amc.2013.01.012
[5] Veeresha, P.; Prakasha, D.; Magesh, N.; Christopher, A. J.; Sarwe, D. U., Solution for fractional potential KdV and Benjamin equations using the novel technique, Journal of Ocean Engineering and Science, 6, 3, 265-275 (2021) · doi:10.1016/j.joes.2021.01.003
[6] Siddiqi, S. S.; Arshed, S., Quintic B-spline for the numerical solution of fourthorder parabolic partial differential equations, World Applied Sciences Journal, 23, 12, 115-122 (2013)
[7] Xu, X.; Xu, D., A semi-discrete scheme for solving fourth-order partial integro-differential equation with a weakly singular kernel using Legendre wavelets method, Computational and Applied Mathematics, 37, 4, 4145-4168 (2018) · Zbl 1402.35292 · doi:10.1007/s40314-017-0566-2
[8] Khan, Y.; Wu, Q., Homotopy perturbation transform method for nonlinear equations using He’s polynomials, Computers & Mathematics with Applications, 61, 8, 1963-1967 (2011) · Zbl 1219.65119 · doi:10.1016/j.camwa.2010.08.022
[9] Hariharan, G.; Kannan, K., Review of wavelet methods for the solution of reaction-diffusion problems in science and engineering, Applied Mathematical Modelling, 38, 3, 799-813 (2014) · Zbl 1427.65429 · doi:10.1016/j.apm.2013.08.003
[10] Li, J.; Chen, Y.; Liu, G., High-order compact ADI methods for parabolic equations, Computers & Mathematics with Applications, 52, 8-9, 1343-1356 (2006) · Zbl 1121.65092 · doi:10.1016/j.camwa.2006.11.010
[11] Sutmann, G.; Steffen, B., High-order compact solvers for the three-dimensional Poisson equation, Journal of Computational and Applied Mathematics, 187, 2, 142-170 (2006) · Zbl 1081.65099 · doi:10.1016/j.cam.2005.03.041
[12] AL-Jawary, M., Analytic solutions for solving fourth-order parabolic partial differential equations with variable coeffcients, International Journal of Advanced Scientific and Technical Research, 3, 5, 531-545 (2015)
[13] Nadeem, M.; Li, F.; Ahmad, H., Modified Laplace variational iteration method for solving fourth-order parabolic partial differential equation with variable coefficients, Computers & Mathematics with Applications, 78, 6, 2052-2062 (2019) · Zbl 1442.65317 · doi:10.1016/j.camwa.2019.03.053
[14] Wazwaz, A.-M., Analytic treatment for variable coefficient fourth-order parabolic partial differential equations, Applied Mathematics and Computation, 123, 2, 219-227 (2001) · Zbl 1027.35006 · doi:10.1016/S0096-3003(00)00070-9
[15] Aziz, T.; Khan, A.; Rashidinia, J., Spline methods for the solution of fourth-order parabolic partial differential equations, Applied Mathematics and Computation, 167, 1, 153-166 (2005) · Zbl 1082.65564 · doi:10.1016/j.amc.2004.06.095
[16] Biazar, J.; Ghazvini, H., He’s variational iteration method for fourth-order parabolic equations, Computers & Mathematics with Applications, 54, 7-8, 1047-1054 (2007) · Zbl 1267.65147 · doi:10.1016/j.camwa.2006.12.049
[17] Dehghan, M.; Manafian, J., The solution of the variable coefficients fourth-order parabolic partial differential equations by the homotopy perturbation method, Zeitschrift f¨ur Naturforschung A, 64, 7-8, 420-430 (2009) · doi:10.1515/zna-2009-7-803
[18] El-Gamel, M., A note on solving the fourth-order parabolic equation by the sinc-Galerkin method, Calcolo, 52, 3, 327-342 (2015) · Zbl 1327.65192 · doi:10.1007/s10092-014-0119-7
[19] Rashidinia, J.; Mohammadi, R., Sextic spline solution of variable coefficient fourth-order parabolic equations, International Journal of Computer Mathematics, 87, 15, 3443-3454 (2010) · Zbl 1280.65088 · doi:10.1080/00207160903085820
[20] Mittal, R.; Jain, R., B-splines methods with redefined basis functions for solving fourth order parabolic partial differential equations, Applied Mathematics and Computation, 217, 23, 9741-9755 (2011) · Zbl 1220.65142 · doi:10.1016/j.amc.2011.04.061
[21] Birol, I., Application of reduced differential transformation method for solving fourth-order parabolic partial differential equations, The Journal of Mathematics and Computer Science, 12, 2, 124-131 (2014) · doi:10.22436/jmcs.012.02.04
[22] Khan, A.; Sultana, T., Numerical solution of fourth order parabolic partial differential equation using parametric septic splines, Hacettepe Journal of Mathematics and Statistics, 4, 45, 1067-1082 (2016) · Zbl 1359.65153 · doi:10.15672/HJMS.20164513115
[23] He, J.-H., Addendum: new interpretation of homotopy perturbation method, International Journal of Modern Physics B, 20, 18, 2561-2568 (2006) · doi:10.1142/S0217979206034819
[24] He, J.-H., Homotopy perturbation method: a new nonlinear analytical technique, Applied Mathematics and Computation, 135, 1, 73-79 (2003) · Zbl 1030.34013 · doi:10.1016/S0096-3003(01)00312-5
[25] Biazar, J.; Ghazvini, H., Convergence of the homotopy perturbation method for partial differential equations, Nonlinear Analysis: Real World Applications, 10, 5, 2633-2640 (2009) · Zbl 1173.35395 · doi:10.1016/j.nonrwa.2008.07.002
[26] Luo, X.; Habib, M.; Karim, S.; Wahash, H. A., Semianalytical approach for the approximate solution of delay differential equations, Complexity, 2022 (2022) · doi:10.1155/2022/1049561
[27] Elzaki, T. M., The new integral transform Elzaki transform, Global Journal of Pure and Applied Mathematics, 7, 1, 57-64 (2011)
[28] Anjum, N.; Suleman, M.; Lu, D.; He, J.-H.; Ramzan, M., Numerical iteration for nonlinear oscillators by Elzaki transform, Journal of Low Frequency Noise, Vibration and Active Control, 39, 4, 879-884 (2020) · doi:10.1177/1461348419873470
[29] Rana, M.; Siddiqui, A.; Ghori, Q.; Qamar, R., Application of He’s homotopy perturbation method to Sumudu transform, International Journal of Nonlinear Sciences and Numerical Simulation, 8, 2, 185-190 (2007) · doi:10.1515/IJNSNS.2007.8.2.185
[30] Aboodh, K.; Farah, R.; Almardy, I.; Osman, A., Solving delay differential equations by Aboodh transformation method, International Journal of Applied Mathematics & Statistical Sciences, 7, 2, 55-64 (2018)
[31] Mohand, M.; Mahgoub, A., The new integral transform Mohand transform, Applied Mathematical Sciences, 12, 2, 113-120 (2017)
[32] Noor, M. A.; Mohyud-Din, S. T., Variational homotopy perturbation method for solving higher dimensional initial boundary value problems, Mathematical Problems in Engineering, 2008 (2008) · Zbl 1155.65082 · doi:10.1155/2008/696734
[33] Allahviranloo, T.; Armand, A.; Pirmohammadi, S., Variational homotopy perturbation method an efficient scheme for solving partial differential equations in fluid mechanics, The Journal of Mathematics and Computer Science, 9, 4, 362-369 (2014) · doi:10.22436/jmcs.09.04.12
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.