×

Hilbert von Neumann modules versus concrete von Neumann modules. (English) Zbl 1512.46037

Accardi, Luigi (ed.) et al., Infinite dimensional analysis, quantum probability and applications, QP41. Proceedings of the 41st conference, United Arab Emirates University (UAEU), Al Ain, Abu Dhabi, United Arab Emirates, virtual, March 28 – April 1, 2021. Cham: Springer. Springer Proc. Math. Stat. 390, 169-182 (2022).
Summary: Apart from presenting some new insights and results, one of our main purposes is to put some records in the development of von Neumann modules straight. The von Neumann or \(W^*\)-objects among the Hilbert \((C^*\text{-})\)modules are around since the first papers by W. L. Paschke [Trans. Am. Math. Soc. 182, 443–468 (1973; Zbl 0239.46062)] and M. A. Rieffel [Adv. Math. 13, 176–257 (1974; Zbl 0284.46040); J. Pure Appl. Algebra 5, 51–96 (1974; Zbl 0295.46099)] that lift Kaplansky’s setting to modules over noncommutative \(C^*\)-algebras. While the formal definition of \(W^*\)-modules is due to Baillet, Denizeau, and Havet [M. Baillet et al., Compos. Math. 66, No. 2, 199–236 (1988; Zbl 0657.46041)], the one of von Neumann modules as strongly closed operator spaces started with M. Skeide [Math. Proc. R. Ir. Acad. 100A, No. 1, 11–38 (2000; Zbl 0972.46038) = [19]]. It has been paired with the definition of concrete von Neumann modules in M. Skeide [J. Oper. Theory 54, No. 1, 119–124 (2005; Zbl 1105.46039) = [23]]. It is well known that (pre-)Hilbert modules can be viewed as ternary rings of operators and in their definition of Hilbert-von Neumann modules, Bikram, Mukherjee, Srinivasan, and Sunder [P. Bikram et al., Commun. Stoch. Anal. 6, No. 1, 49–64 (2012; Zbl 1331.46046) = [4]] take that point of view.
We illustrate that a (suitably nondegenerate) Hilbert-von Neumann module is the same thing as a strongly full concrete von Neumann module. We also use this occasion to put some things in the papers [loc. cit. [4, 19, 23]] right. We show that the tensor product of (concrete, or not) von Neumann correspondences is, indeed, (a generalization of) the tensor product of Connes correspondences (claimed in [M. Skeide, in: Quantum stochastics and information. Statistics, filtering and control. Proceedings of the symposium quantum probability, information and control symposium, Nottingham, UK, July 15–22, 2006. Hackensack, NJ: World Scientific. 47–86 (2008; Zbl 1187.46054)]), viewed in a way quite different from [loc. cit. [4]]. We also present some new arguments that are useful even for (pre-)Hilbert modules.
For the entire collection see [Zbl 1497.46002].

MSC:

46L08 \(C^*\)-modules

References:

[1] Arveson, W., Subalgebras of \(C^*\)-algebras, Acta Math., 123, 141-224 (1969) · Zbl 0194.15701 · doi:10.1007/BF02392388
[2] Baillet, M.; Denizeau, Y.; Havet, JF, Indice d’une esperance conditionnelle, Compositio Math., 66, 199-236 (1988) · Zbl 0657.46041
[3] Bhat, B., Skeide, M.: Tensor product systems of Hilbert modules and dilations of completely positive semigroups. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3, 519-575 (2000) (Rome, Volterra-Preprint 1999/0370) · Zbl 1002.46033
[4] Bikram, P.; Mukherjee, K.; Srinivasan, R.; Sunder, V., Hilbert von Neumann modules, Commun. Stoch. Anal., 6, 49-64 (2012) · Zbl 1331.46046
[5] Blecher, D., A new approach to Hilbert \(C^*\)-modules, Math. Ann., 307, 253-290 (1997) · Zbl 0874.46037 · doi:10.1007/s002080050033
[6] Blecher, D., Le Merdy, C.: Operator Algebras and Their Modules—an Operator Space Approach. Number 30 in London Mathematical Society Monographs. Oxford University Press, Oxford (2004) · Zbl 1061.47002
[7] Connes, A.: Correspondences. His hand-written notes, unpublished (1980)
[8] Kaplansky, I., Modules over operator algebras, Am. J. Math., 75, 839-853 (1953) · Zbl 0051.09101 · doi:10.2307/2372552
[9] Lance, E.: Hilbert \(C^*\)-Modules. Cambridge University Press, Cambridge (1995) · Zbl 0822.46080
[10] Muhly, P., Solel, B.: Quantum Markov processes (correspondences and dilations). Int. J. Math. 51, 863-906 (2002) (arXiv: math.OA/0203193) · Zbl 1057.46050
[11] Murphy, G., Positive definite kernels and Hilbert \(C^*\)-modules, Proc. Edinburgh Math. Soc., 40, 367-374 (1997) · Zbl 0886.46057 · doi:10.1017/S0013091500023804
[12] Paschke, W., Inner product modules over \(B^*\)-algebras, Trans. Am. Math. Soc., 182, 443-468 (1973) · Zbl 0239.46062
[13] Rieffel, M., Multipliers and tensor products of \(L^p\)-spaces of locally compact groups, Studia Math., 33, 71-82 (1969) · Zbl 0177.41702 · doi:10.4064/sm-33-1-71-82
[14] Rieffel, M., Induced representations of \(C^*\)-algebras, Adv. Math., 13, 176-257 (1974) · Zbl 0284.46040 · doi:10.1016/0001-8708(74)90068-1
[15] Rieffel, M., Morita equivalence for \(C^*\)-algebras and \(W^*\)-algebras, J. Pure Appl. Algebra, 5, 51-96 (1974) · Zbl 0295.46099 · doi:10.1016/0022-4049(74)90003-6
[16] Sauvageot, J.L.: Produites tensoriels de \(Z\)-Modules. Preprint 23, Publishing Pierre and Marie Curie University (1980)
[17] Sauvageot, JL, Sur le produit tensoriel relatif d’espace de Hilbert, J. Oper. Theory, 9, 237-252 (1983) · Zbl 0517.46050
[18] Shalit, O.M., Skeide, M.: CP-Semigroups and dilations, subproduct systems and superproduct systems: The multi-parameter case and beyond. Preprint, arXiv: 2003.05166v3, to appear in Dissertationes Math. (2020)
[19] Skeide, M.: Generalized Matrix \(C^*\)-Algebras and Representations of Hilbert Modules. In: Mathematical Proceedings of the Royal Irish Academy, vol. 100A, pp. 11-38 (2000) (Cottbus, Reihe Mathematik 1997/M-13) · Zbl 0972.46038
[20] Skeide, M.: Hilbert modules and applications in quantum probability. Habilitationsschrift, Cottbus (2001). http://web.unimol.it/skeide/ · Zbl 0928.46063
[21] Skeide, M.: Commutants of von Neumann modules, representations of \(\mathcal{B}^a(E)\) and other topics related to product systems of Hilbert modules. In: Price, G., Baker, B., Jorgensen, P., Muhly, P., (eds.), Advances in quantum dynamics. Number 335 in Contemporary Mathematics, American Mathematical Society, pp. 253-262 (2003) (Preprint, Cottbus 2002, arXiv: math.OA/0308231) · Zbl 1057.46056
[22] Skeide, M.: Von Neumann modules, interviwers and self-duality. J. Oper. Theory 54, 119-124 (2005). (arXiv: math.OA/0308230) · Zbl 1105.46039
[23] Skeide, M.: Commutants of von Neumann Correspondences and Duality of Eilenberg-Watts Theorems by Rieffel and by Blecher, vol. 73, pp. 391-408. Banach Center Publications (2006). (arXiv: math.OA/0502241) · Zbl 1109.46050
[24] Skeide, M.: Product systems; a survey with commutants in view. In Belavkin, V., Guta, M., (eds.), Quantum Stochastics and Information, pp. 47-86. World Scientific (2008). (Preferable version: arXiv: 0709.0915v1!) · Zbl 1187.46054
[25] Skeide, M.: Hilbert modules—square roots of positive maps. In: Rebolledo, R., Orszag, M., (eds.), Quantum Probability and Related Topics — Proceedings of the 30th Conference. Number XXVII in Quantum Probability and White Noise Analysis, pp. 296-322. World Scientific (2011). (arXiv: 1007.0113v1) · Zbl 1247.46053
[26] Skeide, M., Sumesh, K.: CP-H-Extendable maps between Hilbert modules and CPH-semigroups. J. Math. Anal. Appl. 414, 886-913 (2014) electronically Jan 2014. Preprint, arXiv: 1210.7491v2 · Zbl 1321.46064
[27] Takesaki, M.: Theory of Operator Algebras II. Number 125 (Number VI in the Subseries Operator Algebras and Non-Commutative Geometry) in Encyclopedia of Mathematical Sciences. Springer (2003) · Zbl 1059.46031
[28] Thom, A.: A remark about the Connes fusion tensor product. Theory Appl. Categ. 25, 38-50 (2011) (arXiv: math0601045) · Zbl 1227.46045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.