×

Second order iterative dynamic boundary value problems with mixed derivative operators with applications. (English) Zbl 1512.34153

Summary: In this paper, we derive sufficient conditions for the existence and uniqueness of solutions of the iterative dynamic boundary value problem of second order with mixed derivative operators. For the existence, we utilize Schauder’s fixed point theorem while for uniqueness we apply contraction mapping principle. Further, a continuous dependence of bounded solutions to the addressed problem is studied. Finally, we demonstrate the validity of our findings by constructing examples as applications to beam deflection due to thermal stress and temperature distribution along the wire.

MSC:

34K42 Functional-differential equations on time scales or measure chains
34K43 Functional-differential equations with state-dependent arguments
34K10 Boundary value problems for functional-differential equations
47N20 Applications of operator theory to differential and integral equations
Full Text: DOI

References:

[1] Anderson, D.; Hoffacker, J., Green’s function for an even order mixed derivative problem on time scales, Dyn. Syst. Appl., 12, 1-2, 9-22 (2013) · Zbl 1049.39019
[2] Atici, FM; Guseinov, GSh, On Green’s functions and positive solutions for boundary value problems on time scales, J. Comput. Appl. Math., 141, 1-2, 75-99 (2002) · Zbl 1007.34025 · doi:10.1016/S0377-0427(01)00437-X
[3] Aulbach, B., Hilger, S.: Linear dynamic processes with inhomogeneous time scale. Nonlinear Dynamics and Quantum Dynamical Systems (Gaussig, 1990), Math. Res., vol. 59, Akademie, Berlin, 9-20, (1990) · Zbl 0719.34088
[4] Baitiche, Z.; Derbazi, C.; Alzabut, J.; Samei, ME; Kaabar, MKA; Siri, Z., Monotone Iterative Method for Langevin Equation in Terms of \(\uppsi -\) Caputo Fractional Derivative and Nonlinear Boundary Conditions, Fractal Fract., 5, 81 (2021) · doi:10.3390/fractalfract5030081
[5] Berinde, V., Existence and approximation of solutions of some first order iterative differential equations, Miskolc Math. Notes, 11, 13-26 (2010) · Zbl 1224.34014 · doi:10.18514/MMN.2010.256
[6] Bohner, M.; Luo, H., Singular second-order multipoint dynamic boundary value problems with mixed derivatives, Adv. Differ. Equ., 1, 1-15 (2006) · Zbl 1139.39024
[7] Bohner, M.; Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (2001), Boston: Birkhäuser Boston Inc, Boston · Zbl 0978.39001 · doi:10.1007/978-1-4612-0201-1
[8] Bohner, M.; Peterson, AC, Advances in Dynamic Equations on Time Scales (2003), Boston: Birkhäuser Boston Inc, Boston · Zbl 1025.34001 · doi:10.1007/978-0-8176-8230-9
[9] Bouakkaz, A.; Ardjouni, A.; Khemis, R.; Djoudi, A., Periodic solutions of a class of third-order functional differential equations with iterative source terms, Bol. Soc. Mat. Mex., 26, 443-458 (2020) · Zbl 1458.34121 · doi:10.1007/s40590-019-00267-x
[10] Bouakkaz, A.; Khemis, R., Positive periodic solutions for a class of second-order differential equations with state dependent delays, Turk. J. Math., 44, 4, 1412-1426 (2020) · Zbl 1459.34157 · doi:10.3906/mat-2004-52
[11] Bouakkaz, A.; Khemis, R., Positive periodic solutions for revisited Nicholson’s blowflies equation with iterative harvesting term, J. Math. Anal. Appl., 494, 2 (2021) · Zbl 1462.34111 · doi:10.1016/j.jmaa.2020.124663
[12] Cannon, J., The solution of the heat equation subject to the specification of energy, Quart. Appl. Math., 21, 155-160 (1963) · Zbl 0173.38404 · doi:10.1090/qam/160437
[13] Chegis, R., Numerical solution of a heat conduction problem with an integral boundary condition, Litovsk. Mat. Sb., 24, 209-215 (1984) · Zbl 0578.65092
[14] Cheraiet, S.; Bouakkaz, A.; Khemis, R., Bounded positive solutions of an iterative three-point boundary-value problem with integral boundary conditions, J. Appl. Math. Comput., 65, 597-610 (2021) · Zbl 1486.34126 · doi:10.1007/s12190-020-01406-8
[15] Chouaf, S.; Khemis, R.; Bouakkaz, A., Some existence results on positive solutions for an iterative second order boundary value problem with integral boundary conditions, Bol. Soc. Paran. Mat. (2020) · Zbl 07801906 · doi:10.5269/bspm.52461
[16] Duke, E.R.: Solving higher order dynamic equations on time scales as first order systems. Theses, Dissertations and Capstones, Marshall University. Paper 577 (2006)
[17] Feckan, M., On a certain type of functional differential equations, Math. Slovaca, 43, 39-43 (1993) · Zbl 0789.34036
[18] Feckan, M.; Wang, J.; Zhao, HY, Maximal and minimal nondecreasing bounded solutions of iterative functional differential equations, Appl. Math. Lett., 113 (2021) · Zbl 1460.34080 · doi:10.1016/j.aml.2020.106886
[19] Ionkin, NI, Solution of a boundary-value problem in heat conduction with a non-classical boundary condition, Differ. Equ., 13, 204-211 (1977) · Zbl 0403.35043
[20] Khuddush, M.; Prasad, KR, Nonlinear two-point iterative functional boundary value problems on time scales, J. Appl. Math. Comput. (2022) · Zbl 1499.34419 · doi:10.1007/s12190-022-01703-4
[21] Lakshmikantham, V.; Sivasundaram, S.; Kaymakçalan, B., Dynamic Systems on Measure Chains, Mathematics and Its Applications (1996), Dordrecht: Kluwer, Dordrecht · Zbl 0869.34039 · doi:10.1007/978-1-4757-2449-3
[22] Messer, K.R.: A second-order self-adjoint equation on a time scale. Dyn. Syst. Appl. 12(1-2), 201-215 (2003). Special issue: dynamic equations on time scales · Zbl 1050.39025
[23] Si, JG; Wang, XP, Analytic solutions of a second order iterative functional differential equation, J. Comput. Appl. Math., 126, 277-285 (2000) · Zbl 0983.34056 · doi:10.1016/S0377-0427(99)00359-3
[24] Turab, A., A unique solution of the iterative boundary value problem for a second-order differential equation approached by fixed point results, Alex. Eng. J., 60, 6, 5797-5802 (2021) · doi:10.1016/j.aej.2021.04.031
[25] Williams, P.A.: Unifying fractional calculus with time scales, [Ph.D. thesis], University of Melbourne (2012)
[26] Yang, D.; Zhang, W., Solution of equivalence for iterative differential equations, Appl. Math. Lett., 17, 759-765 (2004) · Zbl 1068.34069 · doi:10.1016/j.aml.2004.06.002
[27] Zhou, J.; Shen, J., Positive solutions of iterative functional differential equations and application to mixed-type functional differential equations, Disc. Cont. Dyn. Sys. Ser. B (2021) · Zbl 1509.34081 · doi:10.3934/dcdsb.2021198
[28] Usmani, AS; Rotter, JM; Lamont, S.; Sanad, AM; Gillie, M., Fundamental principles of structural behaviour under thermal effects, Fire Saf. J., 36, 721-744 (2001) · doi:10.1016/S0379-7112(01)00037-6
[29] Volz, S., Microscale and nanoscale heat transfer, Top. Appl. Phys., 107, 181-238 (2007) · Zbl 1110.80001 · doi:10.1007/11767862_9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.