×

Matroid Chern-Schwartz-MacPherson cycles and Tutte activities. (English) Zbl 1512.05069

Summary: L. López de Medrano et al. [Proc. Lond. Math. Soc. (3) 120, No. 1, 1–27 (2020; Zbl 1454.14013)] defined Chern-Schwartz-MacPher-son cycles for an arbitrary matroid \(M\) and proved by an inductive geometric argument that the unsigned degrees of these cycles agree with the coefficients of \(T(M;x,0)\), where \(T(M;x,y)\) is the Tutte polynomial associated to \(M\). F. Ardila et al. [J. Am. Math. Soc. 36, No. 3, 727–794 (2023; Zbl 1512.05068)] recently utilized this interpretation of these coefficients in order to demonstrate their log-concavity. In this note we provide a direct calculation of the degree of a matroid Chern-Schwartz-MacPherson cycle by taking its stable intersection with a generic tropical linear space of the appropriate codimension and showing that the weighted point count agrees with the Gioan-Las Vergnas refined activities expansion of the Tutte polynomial [E. Gioan and M. Las Vergnas, “The active bijection 2.a-decomposition of activities for matroid bases, and Tutte polynomial of a matroid in terms of beta invariants of minors”, Preprint. arXiv:1807.06516].

MSC:

05B35 Combinatorial aspects of matroids and geometric lattices
05C31 Graph polynomials
52B40 Matroids in convex geometry (realizations in the context of convex polytopes, convexity in combinatorial structures, etc.)
14C17 Intersection theory, characteristic classes, intersection multiplicities in algebraic geometry
14T15 Combinatorial aspects of tropical varieties

References:

[1] Federico Ardila, Graham Denham, and June Huh, Lagrangian geometry of matroids, J. Amer. Math. Soc., electronically published September 9, 2022, DOI 10.1090/jams/1009. · Zbl 1512.05068
[2] Adiprasito, Karim, Hodge theory for combinatorial geometries, Ann. of Math. (2), 381-452 (2018) · Zbl 1442.14194 · doi:10.4007/annals.2018.188.2.1
[3] Aluffi, Paolo, Grothendieck classes and Chern classes of hyperplane arrangements, Int. Math. Res. Not. IMRN, 1873-1900 (2013) · Zbl 1312.14020 · doi:10.1093/imrn/rns100
[4] Ahmed Umer Ashraf, Of matroid polytopes, chow rings and character polynomials, PhD thesis, University of Western Ontario, 2019.
[5] Spencer Backman, Tutte activities, in J. Ellis-Monaghan and I. Moffatt, eds., Handbook on the Tutte polynomial and related topics, Chapman and Hall/CRC Press, New York, 2022.
[6] Bj\"{o}rner, Anders, Matroid applications. The homology and shellability of matroids and geometric lattices, Encyclopedia Math. Appl., 226-283 (1992), Cambridge Univ. Press, Cambridge · Zbl 0772.05027 · doi:10.1017/CBO9780511662041.008
[7] Brylawski, Tom, The broken-circuit complex, Trans. Amer. Math. Soc., 417-433 (1977) · Zbl 0368.05022 · doi:10.2307/1997928
[8] Cohen, D., Critical points and resonance of hyperplane arrangements, Canad. J. Math., 1038-1057 (2011) · Zbl 1228.32028 · doi:10.4153/CJM-2011-028-8
[9] Crapo, Henry H., The Tutte polynomial, Aequationes Math., 211-229 (1969) · Zbl 0197.50202 · doi:10.1007/BF01817442
[10] Denham, Graham, A geometric deletion-restriction formula, Adv. Math., 1979-1994 (2012) · Zbl 1317.52032 · doi:10.1016/j.aim.2012.04.003
[11] Etienne, Gwihen, External and internal elements of a matroid basis, Discrete Math., 111-119 (1998) · Zbl 0887.05012 · doi:10.1016/S0012-365X(95)00332-Q
[12] Fulton, William, Intersection theory on toric varieties, Topology, 335-353 (1997) · Zbl 0885.14025 · doi:10.1016/0040-9383(96)00016-X
[13] Emeric Gioan, Correspondance naturelle entre bases et r\'eorientations des matr\"oides orient\'e., PhD thesis, University of Bordeaux 1, France, (2002).
[14] Emeric Gioan and Michel Las Vergnas, The Active Bijection 2.a - Decomposition of activities for matroid bases, and Tutte polynomial of a matroid in terms of beta invariants of minors, arXiv e-prints, (2018), 1807.06516, · Zbl 1106.05021
[15] Gordon, Gary, Generalized activities and the Tutte polynomial, Discrete Math., 167-176 (1990) · Zbl 0742.05022 · doi:10.1016/0012-365X(90)90019-E
[16] Huh, June, Log-concavity of characteristic polynomials and the Bergman fan of matroids, Math. Ann., 1103-1116 (2012) · Zbl 1258.05021 · doi:10.1007/s00208-011-0777-6
[17] Huh, June, Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs, J. Amer. Math. Soc., 907-927 (2012) · Zbl 1243.14005 · doi:10.1090/S0894-0347-2012-00731-0
[18] Huh, June, The maximum likelihood degree of a very affine variety, Compos. Math., 1245-1266 (2013) · Zbl 1282.14007 · doi:10.1112/S0010437X13007057
[19] Huh, June, Rota’s conjecture and positivity of algebraic cycles in permutohedral varieties, 73 pp. (2014), ProQuest LLC, Ann Arbor, MI
[20] June Huh, \(h\)-vectors of matroids and logarithmic concavity, Adv. Math., 270 (2015), 49-59 DOI 10.1016/j.aim.2014.11.002. · Zbl 1304.05013
[21] Jensen, Anders, Stable intersections of tropical varieties, J. Algebraic Combin., 101-128 (2016) · Zbl 1406.14045 · doi:10.1007/s10801-015-0627-9
[22] Kook, W., A convolution formula for the Tutte polynomial, J. Combin. Theory Ser. B, 297-300 (1999) · Zbl 0936.05028 · doi:10.1006/jctb.1998.1888
[23] L\'{o}pez de Medrano, Luc\'{\i }a, Chern-Schwartz-MacPherson cycles of matroids, Proc. Lond. Math. Soc. (3), 1-27 (2020) · Zbl 1454.14013 · doi:10.1112/plms.12278
[24] Maclagan, Diane, Introduction to tropical geometry, Graduate Studies in Mathematics, xii+363 pp. (2015), American Mathematical Society, Providence, RI · Zbl 1321.14048 · doi:10.1090/gsm/161
[25] Provan, John Scott, DECOMPOSITIONS, SHELLINGS, AND DIAMETERS OF SIMPLICAL COMPLEXES AND CONVEX POLYHEDRA, 128 pp. (1977), ProQuest LLC, Ann Arbor, MI
[26] Wilf, Herbert S., Colloquio Internazionale sulle Teorie Combinatorie. Which polynomials are chromatic?, 247-256. Atti dei Convegni Lincei, No. 17 (1973), Accad. Naz. Lincei, Rome · Zbl 0352.05031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.