×

Juniper: an open-source nonlinear branch-and-bound solver in Julia. (English) Zbl 1511.90001

van Hoeve, Willem-Jan (ed.), Integration of constraint programming, artificial intelligence, and operations research. 15th international conference, CPAIOR 2018, Delft, The Netherlands, June 26–29, 2018. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 10848, 377-386 (2018).
Summary: Nonconvex mixed-integer nonlinear programs (MINLPs) represent a challenging class of optimization problems that often arise in engineering and scientific applications. Because of nonconvexities, these programs are typically solved with global optimization algorithms, which have limited scalability. However, nonlinear branch-and-bound has recently been shown to be an effective heuristic for quickly finding high-quality solutions to large-scale nonconvex MINLPs, such as those arising in infrastructure network optimization. This work proposes Juniper, a Julia-based open-source solver for nonlinear branch-and-bound. Leveraging the high-level Julia programming language makes it easy to modify Juniper’s algorithm and explore extensions, such as branching heuristics, feasibility pumps, and parallelization. Detailed numerical experiments demonstrate that the initial release of Juniper is comparable with other nonlinear branch-and-bound solvers, such as Bonmin, Minotaur, and Knitro, illustrating that Juniper provides a strong foundation for further exploration in utilizing nonlinear branch-and-bound algorithms as heuristics for nonconvex MINLPs.
For the entire collection see [Zbl 1388.68011].

MSC:

90-04 Software, source code, etc. for problems pertaining to operations research and mathematical programming
90C59 Approximation methods and heuristics in mathematical programming
90C57 Polyhedral combinatorics, branch-and-bound, branch-and-cut
90C30 Nonlinear programming

References:

[1] Audet, C.; Brimberg, J.; Hansen, P.; Digabel, SL; Mladenovic, N., Pooling problem: alternate formulations and solution methods, Manage. Sci., 50, 6, 761-776, 2004 · Zbl 1232.90349 · doi:10.1287/mnsc.1030.0207
[2] Trespalacios, F., Kolodziej, S.P., Furman, K.C., Sawaya, N.W.: Multiperiod blend scheduling problem. Cyber Infrastructure for MINLP, June 2013. www.minlp.org/library/problem/index.php?i=168
[3] Jabr, RA, Optimization of AC transmission system planning, IEEE Trans. Power Syst., 28, 3, 2779-2787, 2013 · doi:10.1109/TPWRS.2012.2228507
[4] Coffrin, C., Hijazi, H.L., Lehmann, K., Hentenryck, P.V.: Primal and dual bounds for optimal transmission switching. In: 2014 Power Systems Computation Conference, pp. 1-8, August 2014
[5] Coffrin, C., Hijazi, H.L.: Heuristic MINLP for optimal power flow problems. In: 2014 IEEE Power & Energy Society General Meetings (PES) Application of Modern Heuristic Optimization Algorithms for Solving Optimal Power Flow Problems Competition (2014)
[6] Borraz-Sanchez, C.; Bent, R.; Backhaus, S.; Hijazi, H.; Hentenryck, PV, Convex relaxations for gas expansion planning, INFORMS J. Comput., 28, 4, 645-656, 2016 · Zbl 1355.90063 · doi:10.1287/ijoc.2016.0697
[7] Belotti, P.; Kirches, C.; Leyffer, S.; Linderoth, J.; Luedtke, J.; Mahajan, A., Mixed-integer nonlinear optimization, Acta Numer., 22, 1-131, 2013 · Zbl 1291.65172 · doi:10.1017/S0962492913000032
[8] Bonami, P.; Biegler, LT; Conn, AR; Cornuéjols, G.; Grossmann, IE; Laird, CD; Lee, J.; Lodi, A.; Margot, F.; Sawaya, N.; Wächter, A., An algorithmic framework for convex mixed integer nonlinear programs, Discrete Optim., 5, 2, 186-204, 2008 · Zbl 1151.90028 · doi:10.1016/j.disopt.2006.10.011
[9] Lubin, M.; Yamangil, E.; Bent, R.; Vielma, JP; Louveaux, Q.; Skutella, M., Extended formulations in mixed-integer convex programming, Integer Programming and Combinatorial Optimization, 102-113, 2016, Cham: Springer, Cham · Zbl 1419.90078 · doi:10.1007/978-3-319-33461-5_9
[10] Achterberg, T., SCIP: solving constraint integer programs, Math. Program. Comput., 1, 1, 1-41, 2009 · Zbl 1171.90476 · doi:10.1007/s12532-008-0001-1
[11] Bonami, P., Gunluk, O., Linderoth, J.: Solving box-constrained nonconvex quadratic programs (2016). http://www.optimization-online.org/DB_HTML/2016/06/5488.html
[12] Ryoo, H.; Sahinidis, N., A branch-and-reduce approach to global optimization, J. Global Optim., 8, 2, 107-138, 1996 · Zbl 0856.90103 · doi:10.1007/BF00138689
[13] Belotti, P.: Couenne: user manual (2009). https://projects.coin-or.org/Couenne/. Accessed 04 Oct 2015
[14] Nagarajan, H., Lu, M., Wang, S., Bent, R., Sundar, K.: An adaptive, multivariate partitioning algorithm for global optimization of nonconvex programs. arXiv preprint arXiv:1707.02514 (2017)
[15] Nagarajan, H.; Lu, M.; Yamangil, E.; Bent, R.; Rueher, M., Tightening McCormick relaxations for nonlinear programs via dynamic multivariate partitioning, Principles and Practice of Constraint Programming, 369-387, 2016, Cham: Springer, Cham · doi:10.1007/978-3-319-44953-1_24
[16] Sahraei-Ardakani, M., Korad, A., Hedman, K.W., Lipka, P., Oren, S.: Performance of AC and DC based transmission switching heuristics on a large-scale polish system. In: 2014 IEEE PES General Meeting—Conference Exposition, pp. 1-5, July 2014
[17] Dunning, I.; Huchette, J.; Lubin, M., JuMP: a modeling language for mathematical optimization, SIAM Rev., 59, 2, 295-320, 2017 · Zbl 1368.90002 · doi:10.1137/15M1020575
[18] Wächter, A.; Biegler, LT, On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming, Math. Program., 106, 1, 25-57, 2006 · Zbl 1134.90542 · doi:10.1007/s10107-004-0559-y
[19] Benichou, M.; Gauthier, JM; Girodet, P.; Hentges, G.; Ribiere, G.; Vincent, O., Experiments in mixed-integer linear programming, Math. Program., 1, 1, 76-94, 1971 · Zbl 0233.90016 · doi:10.1007/BF01584074
[20] Applegate, D., Bixby, R., Chvatal, V., Cook, B.: Finding cuts in the TSP (a preliminary report). Technical report (1995)
[21] Achterberg, T.; Koch, T.; Martin, A., Branching rules revisited, Oper. Res. Lett., 33, 1, 42-54, 2005 · Zbl 1076.90037 · doi:10.1016/j.orl.2004.04.002
[22] Fischetti, M.; Glover, F.; Lodi, A., The feasibility pump, Math. Program., 104, 1, 91-104, 2005 · Zbl 1077.90039 · doi:10.1007/s10107-004-0570-3
[23] D’Ambrosio, C.; Frangioni, A.; Liberti, L.; Lodi, A., A storm of feasibility pumps for nonconvex MINLP, Math. Program., 136, 2, 375-402, 2012 · Zbl 1257.90056 · doi:10.1007/s10107-012-0608-x
[24] Byrd, RH; Nocedal, J.; Waltz, RA; Di Pillo, G.; Roma, M., KNITRO: an integrated package for nonlinear optimization, Large-Scale Nonlinear Optimization, 53-59, 2006, Boston: Springer, Boston · Zbl 1108.90004 · doi:10.1007/0-387-30065-1_4
[25] Kröger, O., Coffrin, C., Hijazi, H., Nagarajan, H.: Juniper (2017). https://github.com/lanl-ansi/Juniper.jl. Accessed 14 Dec 2017
[26] Mahajan, A., Leyffer, S., Linderoth, J., Luedtke, J., Munson, T.: Minotaur: a mixed-integer nonlinear optimization toolkit (2017)
[27] Gleixner, A., Eifler, L., Gally, T., Gamrath, G., Gemander, P., Gottwald, R.L., Hendel, G., Hojny, C., Koch, T., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schlösser, F., Serrano, F., Shinano, Y., Viernickel, J.M., Vigerske, S., Weninger, D., Witt, J.T., Witzig, J.: The SCIP optimization suite 5.0. Technical report 17-61, ZIB, Takustr. 7, 14195 Berlin (2017)
[28] Research Councils UK: The HSL mathematical software library. http://www.hsl.rl.ac.uk/. Accessed 30 Oct 2017
[29] Vigerske, S.: MINLP Library 2 (2017). http://www.gamsworld.org/minlp/minlplib2/html/. Accessed 17 Dec 2017
[30] Wang, S.: MINLPLibJuMP (2017). https://github.com/lanl-ansi/MINLPLibJuMP.jl. Accessed 14 Dec 2017
[31] Free Software Foundation Inc.: GNU linear programming kit (2017). https://www.gnu.org/software/glpk/
[32] The COIN-OR Foundation: COIN-OR CBC (2017). https://projects.coin-or.org/Cbc
[33] Gurobi Optimization Inc.: Gurobi optimizer reference manual (2014). http://www.gurobi.com
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.