×

The effective hydrodynamic radius in the Stokes-Einstein relation is not a constant. (English) Zbl 1511.76077

MSC:

76M28 Particle methods and lattice-gas methods
76D07 Stokes and related (Oseen, etc.) flows

Software:

Gromacs
Full Text: DOI

References:

[1] Kubo, R.; Toda, M.; Hashitsume, N., Statistical Physics II: Nonequilibrium Statistical Mechanics (2012), Berlin: Springer, Berlin
[2] Landau, L. D.; Lifshitz, E. M., Fluid Mechanics (1987), Oxford: Pergamon, Oxford · Zbl 0655.76001
[3] Young, M. E.; Carroad, P. A.; Bell, R. L., Estimation of diffusion coefficients of proteins, Biotechnol. Bioeng., 22, 947 (1980) · doi:10.1002/bit.260220504
[4] McCarthy, M. R.; Vandegriff, K. D.; Winslow, R. M., The role of facilitated diffusion in oxygen transport by cell-free hemoglobins: implications for the design of hemoglobin-based oxygen carriers, Biophys. Chem., 92, 103 (2001) · doi:10.1016/S0301-4622(01)00194-6
[5] Kawasaki, T.; Kim, K., Identifying time scales for violation/preservation of Stokes-Einstein relation in supercooled water, Sci. Adv., 3 (2017) · doi:10.1126/sciadv.1700399
[6] Shi, Z.; Debenedetti, P. G.; Stillinger, F. H., Relaxation processes in liquids: variations on a theme by Stokes and Einstein, J. Chem. Phys., 138 (2013) · doi:10.1063/1.4775741
[7] Jeong, D.; Choi, M. Y.; Kim, H. J.; Jung, Y., Fragility, Stokes-Einstein violation, and correlated local excitations in a coarse-grained model of an ionic liquid, Phys. Chem. Chem. Phys., 12, 2001 (2010) · doi:10.1039/b921725h
[8] Dehaoui, A.; Issenmann, B.; Caupin, F., Viscosity of deeply supercooled water and its coupling to molecular diffusion, Proc. Natl. Acad. Sci. USA, 112, 12020 (2015) · doi:10.1073/pnas.1508996112
[9] Tsimpanogiannis, I. N.; Jamali, S. H.; Economou, I. G.; Vlugt, T. J H.; Moultos, O. A., On the validity of the Stokes-Einstein relation for various water force fields, Mol. Phys., 118, 1 (2019)
[10] Corsaro, C.; Fazio, E.; Mallamace, D., The Stokes-Einstein relation in water/methanol solutions, J. Chem. Phys., 150 (2019) · doi:10.1063/1.5096760
[11] Bordat, P.; Affouard, F. D R.; Descamps, M.; M ller-Plathe, F., The breakdown of the Stokes-Einstein relation in supercooled binary liquids, J. Phys. Condens. Matter, 15, 5397 (2003) · doi:10.1088/0953-8984/15/32/301
[12] Mallamace, F.; Branca, C.; Corsaro, C.; Leone, N.; Spooren, J.; Stanley, H. E.; Chen, S-H, Dynamical crossover and breakdown of the Stokes−Einstein relation in confined water and in methanol-diluted bulk water, J. Phys. Chem. B, 114, 1870 (2010) · doi:10.1021/jp910038j
[13] Hedges, L. O.; Maibaum, L.; Chandler, D.; Garrahan, J. P., Decoupling of exchange and persistence times in atomistic models of glass formers, J. Chem. Phys., 127 (2007) · doi:10.1063/1.2803062
[14] Jung, Y.; Garrahan, J. P.; Chandler, D., Dynamical exchanges in facilitated models of supercooled liquids, J. Chem. Phys., 123 (2005) · doi:10.1063/1.2001629
[15] Jung, Y.; Garrahan, J. P.; Chandler, D., Excitation lines and the breakdown of Stokes-Einstein relations in supercooled liquids, Phys. Rev. E, 69 (2004) · doi:10.1103/PhysRevE.69.061205
[16] Sengupta, S.; Karmakar, S.; Dasgupta, C.; Sastry, S., Breakdown of the Stokes-Einstein relation in two, three, and four dimensions, J. Chem. Phys., 138 (2013) · doi:10.1063/1.4792356
[17] Blondel, O.; Toninelli, C., Is there a fractional breakdown of the Stokes-Einstein relation in kinetically constrained models at low temperature?, EPL (Europhys. Lett.), 107, 26005 (2014) · doi:10.1209/0295-5075/107/26005
[18] Mazza, M. G.; Giovambattista, N.; Stanley, H. E.; Starr, F. W., Connection of translational and rotational dynamical heterogeneities with the breakdown of the Stokes-Einstein and Stokes-Einstein-Debye relations in water, Phys. Rev. E, 76 (2007) · doi:10.1103/PhysRevE.76.031203
[19] Xu, L.; Mallamace, F.; Yan, Z.; Starr, F. W.; Buldyrev, S. V.; Eugene Stanley, H., Appearance of a fractional Stokes-Einstein relation in water and a structural interpretation of its onset, Nat. Phys., 5, 565 (2009) · doi:10.1038/nphys1328
[20] Kumar, P.; Buldyrev, S. V.; Becker, S. R.; Poole, P. H.; Starr, F. W.; Stanley, H. E., Relation between the Widom line and the breakdown of the Stokes-Einstein relation in supercooled water, Proc. Natl. Acad. Sci. USA, 104, 9575 (2007) · doi:10.1073/pnas.0702608104
[21] Lee, S. H.; Rasaiah, J. C., Molecular dynamics simulation of ionic mobility. I. Alkali metal cations in water at 25 °C, J. Chem. Phys., 101, 6964 (1994) · doi:10.1063/1.468323
[22] Lee, S. H.; Rasaiah, J. C., Molecular dynamics simulation of ion mobility. 2. Alkali metal and halide ions using the SPC/E model for water at 25 C, J. Phys. Chem., 100, 1420 (1996) · doi:10.1021/jp953050c
[23] Schultz, S. G.; Solomon, A. K., Determination of the effective hydrodynamic radii of small molecules by viscometry, J. Gen. Physiol., 44, 1189 (1961) · doi:10.1085/jgp.44.6.1189
[24] Nygaard, M.; Kragelund, B. B.; Papaleo, E.; Lindorff-Larsen, K., An efficient method for estimating the hydrodynamic radius of disordered protein conformations, Biophys. J., 113, 550 (2017) · doi:10.1016/j.bpj.2017.06.042
[25] Robinson, R. A.; Stokes, R. H., Electrolyte Solutions (2002), New York: Dover, New York
[26] Habasaki, J.; Ngai, K. L., Rigidity and soft percolation in the glass transition of an atomistic model of ionic liquid, 1-ethyl-3-methyl imidazolium nitrate, from molecular dynamics simulations—existence of infinite overlapping networks in a fragile ionic liquid, J. Chem. Phys., 142 (2015) · doi:10.1063/1.4918586
[27] Noda, A.; Hayamizu, K.; Watanabe, M., Pulsed-gradient spin−echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids, J. Phys. Chem. B, 105, 4603 (2001) · doi:10.1021/jp004132q
[28] Boon, J. P.; Yip, S., Molecular Hydrodynamics (1991), New York: Dover, New York
[29] Debenedetti, P. G., Metastable Liquids: Concepts and Principles (1996), Princeton, NJ: Princeton University Press, Princeton, NJ
[30] Ramírez-González, P. E.; Medina-Noyola, M., Glass transition in soft-sphere dispersions, J. Phys. Condens. Matter, 21 (2009) · doi:10.1088/0953-8984/21/7/075101
[31] Lewis, L. J.; Wahnström, G., Molecular-dynamics study of supercooled ortho-terphenyl, Phys. Rev. E, 50, 3865 (1994) · doi:10.1103/PhysRevE.50.3865
[32] Kob, W.; Donati, C.; Plimpton, S. J.; Poole, P. H.; Glotzer, S. C., Dynamical heterogeneities in a supercooled Lennard-Jones liquid, Phys. Rev. Lett., 79, 2827 (1997) · doi:10.1103/PhysRevLett.79.2827
[33] Berendsen, H. J C.; van der Spoel, D.; van Drunen, R., GROMACS: a message-passing parallel molecular dynamics implementation, Comput. Phys. Commun., 91, 43 (1995) · doi:10.1016/0010-4655(95)00042-E
[34] Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J., GROMACS: fast, flexible, and free, J. Comput. Chem., 26, 1701 (2005) · doi:10.1002/jcc.20291
[35] Nosé, S., A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys., 81, 511 (1984) · doi:10.1063/1.447334
[36] Hoover, W. G., Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. A, 31, 1695 (1985) · doi:10.1103/PhysRevA.31.1695
[37] Hess, B., Determining the shear viscosity of model liquids from molecular dynamics simulations, J. Chem. Phys., 116, 209 (2002) · doi:10.1063/1.1421362
[38] Affouard, F.; Descamps, M.; Valdes, L-C; Habasaki, J.; Bordat, P.; Ngai, K. L., Breakdown of the Stokes-Einstein relation in Lennard-Jones glassforming mixtures with different interaction potential, J. Chem. Phys., 131 (2009) · doi:10.1063/1.3204063
[39] Swallen, S. F.; Bonvallet, P. A.; McMahon, R. J.; Ediger, M. D., Self-diffusion of tris-naphthylbenzene near the glass transition temperature, Phys. Rev. Lett., 90 (2003) · doi:10.1103/PhysRevLett.90.015901
[40] Varela, L. M.; Garcı́a, M.; Mosquera, V. C., Exact mean-field theory of ionic solutions: non-Debye screening, Phys. Rep., 382, 1 (2003) · doi:10.1016/S0370-1573(03)00210-2
[41] Shi, R.; Russo, J.; Tanaka, H., Origin of the emergent fragile-to-strong transition in supercooled water, Proc. Natl. Acad. Sci. USA, 115, 9444 (2018) · doi:10.1073/pnas.1807821115
[42] Gan, R. S T., Supercooled liquids analogous fractional Stokes-Einstein relation in NaCl solution above room temperature, Chin. Phys. B, 28, 76107 (2019) · doi:10.1088/1674-1056/28/7/076107
[43] Harris, K. R., Relations between the Fractional Stokes−Einstein and Nernst−Einstein equations and velocity correlation coefficients in ionic liquids and molten salts, J. Phys. Chem. B, 114, 9572 (2010) · doi:10.1021/jp102687r
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.