×

High order entropy preserving ADER-DG schemes. (English) Zbl 1511.65109

Summary: In this paper, we develop a fully discrete entropy preserving ADER-Discontinuous Galerkin (ADER-DG) method. To obtain this desired result, we equip the space part of the method with entropy correction terms that balance the entropy production in space, inspired by the work of Abgrall. Whereas for the time-discretization we apply the relaxation approach introduced by Ketcheson that allows to modify the timestep to preserve the entropy to machine precision. Up to our knowledge, it is the first time that a provable fully discrete entropy preserving ADER-DG scheme is constructed. We verify our theoretical results with various numerical simulations.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
35L65 Hyperbolic conservation laws
65L20 Stability and convergence of numerical methods for ordinary differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65P10 Numerical methods for Hamiltonian systems including symplectic integrators

Software:

RRK_rr

References:

[1] Tadmor, E., The numerical viscosity of entropy stable schemes for systems of conservation laws. I, Math. Comput., 49, 179, 91-103 (1987) · Zbl 0641.65068
[2] Tadmor, E., Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numer., 12, 451-512 (2003) · Zbl 1046.65078
[3] Gassner, G. J.; Winters, A. R.; Kopriva, D. A., A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations, Appl. Math. Comput., 272, 291-308 (2016) · Zbl 1410.65393
[4] Wintermeyer, N.; Winters, A. R.; Gassner, G. J.; Kopriva, D. A., An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry, J. Comput. Phys., 340, 200-242 (2017) · Zbl 1380.65291
[5] Parisot, M., Entropy-satisfying scheme for a hierarchy of dispersive reduced models of free surface flow, Int. J. Numer. Methods Fluids, 91, 10, 509-531 (2019)
[6] Puppo, G.; Semplice, M., Numerical entropy and adaptivity for finite volume schemes, Commun. Comput. Phys., 10, 5, 1132-1160 (2011) · Zbl 1373.76140
[7] Gassner, G. J.; Winters, A. R.; Kopriva, D. A., Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations, J. Comput. Phys., 327, 39-66 (2016) · Zbl 1422.65280
[8] Chandrashekar, P., Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations, Commun. Comput. Phys., 14, 5, 1252-1286 (2013) · Zbl 1373.76121
[9] Ray, D.; Chandrashekar, P.; Fjordholm, U. S.; Mishra, S., Entropy stable scheme on two-dimensional unstructured grids for Euler equations, Commun. Comput. Phys., 19, 5, 1111-1140 (2016) · Zbl 1373.76143
[10] http://www.math.ualberta.ca/ijnamb/Volume-4-2013/No-4-13/2013-04-02.pdf · Zbl 1463.76036
[11] Crean, J.; Hicken, J. E.; Del Rey Fernández, D. C.; Zingg, D. W.; Carpenter, M. H., Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements, J. Comput. Phys., 356, 410-438 (2018) · Zbl 1380.76080
[12] Gassner, G. J.; Winters, A. R.; Hindenlang, F. J.; Kopriva, D. A., The BR1 scheme is stable for the compressible Navier-Stokes equations, J. Sci. Comput., 77, 1, 154-200 (2018) · Zbl 1407.65189
[13] Id/No 108897 · Zbl 1453.76155
[14] Id/No 104631 · Zbl 1521.76326
[15] Manzanero, J.; Rubio, G.; Kopriva, D. A.; Ferrer, E.; Valero, E., Entropy-stable discontinuous Galerkin approximation with summation-by-parts property for the incompressible Navier-Stokes/Cahn-Hilliard system, J. Comput. Phys., 408, 109363 (2020) · Zbl 07505633
[16] Manzanero, J.; Rubio, G.; Kopriva, D. A.; Ferrer, E.; Valero, E., An entropy-stable discontinuous Galerkin approximation for the incompressible Navier-Stokes equations with variable density and artificial compressibility, J. Comput. Phys., 408, 109241 (2020) · Zbl 07505602
[17] Chandrashekar, P.; Klingenberg, C., Entropy stable finite volume scheme for ideal compressible MHD on 2-D Cartesian meshes, SIAM J. Numer. Anal., 54, 2, 1313-1340 (2016) · Zbl 1381.76213
[18] Coquel, F.; Marmignon, C.; Rai, P.; Renac, F., An entropy stable high-order discontinuous Galerkin spectral element method for the Baer-Nunziato two-phase flow model, J. Comput. Phys., 431, 110135 (2021) · Zbl 07511452
[19] Id/No 110584 · Zbl 07515844
[20] Marmignon, C.; Naddei, F.; Renac, F., Energy relaxation approximation for compressible multicomponent flows in thermal nonequilibrium, Numer. Math., 151, 1, 151-184 (2022) · Zbl 1493.65140
[21] Abgrall, R., A general framework to construct schemes satisfying additional conservation relations. application to entropy conservative and entropy dissipative schemes, J. Comput. Phys., 372, 640-666 (2018) · Zbl 1415.76442
[22] Abgrall, R.; Nordström, J.; Öffner, P.; Tokareva, S., Analysis of the SBP-SAT stabilization for finite element methods part II: entropy stability, Commun. Appl. Math. Comput., 1-23 (2020) · Zbl 1456.65100
[23] Kuzmin, D., Entropy stabilization and property-preserving limiters for P1 discontinuous Galerkin discretizations of scalar hyperbolic problems, J. Numer. Math., 29, 4, 307-322 (2021) · Zbl 1481.65228
[24] Kuzmin, D.; de Luna, M. Q., Algebraic entropy fixes and convex limiting for continuous finite element discretizations of scalar hyperbolic conservation laws, Comput. Methods Appl. Mech. Eng., 372, 113370 (2020) · Zbl 1506.74413
[25] Chen, T.; Shu, C.-W., Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws, J. Comput. Phys., 345, 427-461 (2017) · Zbl 1380.65253
[26] Carpenter, M. H.; Fisher, T. C.; Nielsen, E. J.; Frankel, S. H., Entropy stable spectral collocation schemes for the Navier-Stokes equations: discontinuous interfaces, SIAM J. Sci. Comput., 36, 5, B835-B867 (2014) · Zbl 1457.65140
[27] Fisher, T. C.; Carpenter, M. H., High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains, J. Comput. Phys., 252, 518-557 (2013) · Zbl 1349.65293
[28] urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-84553 · Zbl 1284.65102
[29] Kopriva, D. A.; Gassner, G. J.; Nordstrom, J., On the theoretical foundation of overset grid methods for hyperbolic problems ii: entropy bounded formulations for nonlinear conservation laws, J. Comput. Phys., 111620, 2022 (2022) · Zbl 07605591
[30] D. Hillebrand, S.-C. Klein, P. Öffner, Comparison to control oscillations in high-order finite volume schemes via physical constraint limiters, neural networks and polynomial annihilation, arXiv preprint arXiv:2203.00297(2022).
[31] Renac, F., Entropy stable DGSEM for nonlinear hyperbolic systems in nonconservative form with application to two-phase flows, J. Comput. Phys., 382, 1-26 (2019) · Zbl 1451.76073
[32] Carré, G.; Del Pino, S.; Després, B.; Labourasse, E., A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension, J. Comput. Phys., 228, 14, 5160-5183 (2009) · Zbl 1168.76029
[33] Duan, J.; Tang, H., Entropy stable adaptive moving mesh schemes for 2D and 3D special relativistic hydrodynamics, J. Comput. Phys., 426, 109949 (2021) · Zbl 07510063
[34] Chan, A.; Gallice, G.; Loubère, R.; Maire, P.-H., Positivity preserving and entropy consistent approximate Riemann solvers dedicated to the high-order MOOD-based finite volume discretization of Lagrangian and Eulerian gas dynamics, Comput. Fluids, 229, 105056 (2021) · Zbl 1521.76405
[35] Ketcheson, D. I., Relaxation Runge-Kutta methods: conservation and stability for inner-product norms, SIAM J. Numer. Anal., 57, 6, 2850-2870 (2019) · Zbl 1427.65115
[36] Ranocha, H.; Sayyari, M.; Dalcin, L.; Parsani, M.; Ketcheson, D. I., Relaxation Runge-Kutta methods: fully discrete explicit entropy-stable schemes for the compressible Euler and Navier-Stokes equations, SIAM J. Sci. Comput., 42, 2, a612-a638 (2020) · Zbl 1432.76207
[37] Abgrall, R.; Mélédo, E. L.; Öffner, P.; Torlo, D., Relaxation deferred correction methods and their applications to residual distribution schemes, SMAI J. Comput. Math., 8, 125-160 (2022) · Zbl 1501.65061
[38] Abgrall, R.; Öffner, P.; Ranocha, H., Reinterpretation and extension of entropy correction terms for residual distribution and discontinuous Galerkin schemes: application to structure preserving discretization, J. Comput. Phys., 110955 (2022) · Zbl 07517718
[39] Friedrich, L.; Schnücke, G.; Winters, A. R.; Fernández, D. C.D. R.; Gassner, G. J.; Carpenter, M. H., Entropy stable space-time discontinuous Galerkin schemes with summation-by-parts property for hyperbolic conservation laws, J. Sci. Comput., 80, 1, 175-222 (2019) · Zbl 1421.35262
[40] Id/No 114428 · Zbl 1507.65186
[41] Öffner, P.; Glaubitz, J.; Ranocha, H., Stability of correction procedure via reconstruction with summation-by-parts operators for Burgers’ equation using a polynomial chaos approach, ESAIM, Math. Model. Numer. Anal., 52, 6, 2215-2245 (2018) · Zbl 1420.65094
[42] Ranocha, H.; Glaubitz, J.; Öffner, P.; Sonar, T., Stability of artificial dissipation and modal filtering for flux reconstruction schemes using summation-by-parts operators, Appl. Numer. Math., 128, 1-23 (2018) · Zbl 1404.65201
[43] Titarev, V. A.; Toro, E. F., ADER: arbitrary high-order Godunov approach, J. Sci. Comput., 17, 1-4, 609-618 (2002) · Zbl 1024.76028
[44] Toro, E. F.; Millington, R.; Nejad, L., Towards very high order Godunov schemes, Godunov Methods. Theory and Applications. International Conference, Oxford, GB, October 1999, 907-940 (2001), New York, NY · Zbl 0989.65094
[45] Dumbser, M.; Balsara, D. S.; Toro, E. F.; Munz, C.-D., A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes, J. Comput. Phys., 227, 18, 8209-8253 (2008) · Zbl 1147.65075
[46] Rossi, G.; Dumbser, M.; Armanini, A., A well-balanced path conservative SPH scheme for nonconservative hyperbolic systems with applications to shallow water and multi-phase flows, Comput. Fluids, 154, 102-122 (2017) · Zbl 1390.76760
[47] Dumbser, M.; Munz, C.-D., ADER discontinuous Galerkin schemes for aeroacoustics, C. R. Méc., 333, 683-687 (2005) · Zbl 1107.76044
[48] Boscheri, W.; Dumbser, M.; Balsara, D., High-order ADER-WENO ALE schemes on unstructured triangular meshes—application of several node solvers to hydrodynamics and magnetohydrodynamics, Int. J. Numer. Methods Fluids, 76, 10, 737-778 (2014)
[49] Boscheri, W.; Dumbser, M., Arbitrary-Lagrangian-Eulerian discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes, J. Comput. Phys., 346, 449-479 (2017) · Zbl 1378.76044
[50] Boscheri, W.; Chiocchetti, S.; Peshkov, I., A cell-centered implicit-explicit Lagrangian scheme for a unified model of nonlinear continuum mechanics on unstructured meshes, J. Comput. Phys., 451, 110852 (2022) · Zbl 07517157
[51] Fambri, F.; Dumbser, M.; Köppel, S.; Rezzolla, L.; Zanotti, O., ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics, Mon. Not. R. Astron. Soc., 477, 4, 4543-4564 (2018)
[52] Dumbser, M.; Fambri, F.; Gaburro, E.; Reinarz, A., On GLM curl cleaning for a first order reduction of the CCZ4 formulation of the Einstein field equations, J. Comput. Phys., 404, 109088 (2020) · Zbl 1453.85002
[53] Dematté, R.; Titarev, V.; Montecinos, G.; Toro, E., ADER methods for hyperbolic equations with a time-reconstruction solver for the generalized Riemann problem: the scalar case, Commun. Appl. Math. Comput., 2, 3, 369-402 (2020) · Zbl 1476.65204
[54] Gaburro, E.; Dumbser, M., A posteriori subcell finite volume limiter for general PNPM schemes: applications from gasdynamics to relativistic magnetohydrodynamics, J. Sci. Comput., 86, 3, 1-41 (2021) · Zbl 1475.65091
[55] Chiocchetti, S.; Peshkov, I.; Gavrilyuk, S.; Dumbser, M., High order ADER schemes and GLM curl cleaning for a first order hyperbolic formulation of compressible flow with surface tension, J. Comput. Phys., 426, 109898 (2021) · Zbl 07510040
[56] Id/No 2 · Zbl 1459.76086
[57] Ranocha, H.; Lóczi, L.; Ketcheson, D. I., General relaxation methods for initial-value problems with application to multistep schemes, Numer. Math., 146, 4, 875-906 (2020) · Zbl 1456.65051
[58] Harten, A., On the symmetric form of systems of conservation laws with entropy, J. Comput. Phys., 49, 151-164 (1983) · Zbl 0503.76088
[59] Id/No 109167 · Zbl 07504692
[60] Balsara, D. S.; Meyer, C.; Dumbser, M.; Du, H.; Xu, Z., Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes – speed comparisons with Runge-Kutta methods, J. Comput. Phys., 235, 934-969 (2013) · Zbl 1291.76237
[61] Gaburro, E., A unified framework for the solution of hyperbolic PDE systems using high order direct arbitrary-Lagrangian-Eulerian schemes on moving unstructured meshes with topology change, Arch. Comput. Methods Eng., 28, 3, 1249-1321 (2021)
[62] Abgrall, R.; Ricchiuto, M., High order methods for CFD, (Stein, E.; de Borst, R.; Hughes, T. J., Encyclopedia of Computational Mechanics (2017), John Wiley and Sons)
[63] Stroud, A., Approximate Calculation of Multiple Integrals (1971), Prentice-Hall Inc.: Prentice-Hall Inc. Englewood Cliffs, New Jersey · Zbl 0379.65013
[64] Kang, S.; Constantinescu, E. M., Entropy-preserving and entropy-stable relaxation IMEX and multirate time-stepping methods, J. Sci. Comput., 93, 1, 31 (2022), Id/No 23 · Zbl 1497.65176
[65] Ricchiuto, M.; Bollermann, A., Stabilized residual distribution for shallow water simulations, J. Comput. Phys., 228, 4, 1071-1115 (2009) · Zbl 1330.76097
[66] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Phys., 77, 439-471 (1988) · Zbl 0653.65072
[67] M. Ricchiuto, D. Torlo, Analytical travelling vortex solutions of hyperbolic equations for validating very high order schemes, arXiv preprint:2109.10183(2021).
[68] Y. Mantri, P. Öffner, M. Ricchiuto, Fully well balanced and entropy conservative global flux DGSEM for shallow water flows, in preparation (2022).
[69] M. Ciallella, D. Torlo, M. Ricchiuto, Arbitrary high order weno finite volume scheme with flux globalization for moving equilibria preservation, arXiv preprint arXiv:2205.13315(2022). · Zbl 07708330
[70] Sjögreen, B.; Yee, H., Entropy stable method for the Euler equations revisited: central differencing via entropy splitting and SBP, J. Sci. Comput., 81, 3, 1359-1385 (2019) · Zbl 1448.76110
[71] Tavelli, M.; Dumbser, M., A high order semi-implicit discontinuous Galerkin method for the two dimensional shallow water equations on staggered unstructured meshes, Appl. Math. Comput., 234, 623-644 (2014) · Zbl 1298.76120
[72] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (1999), Springer · Zbl 0923.76004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.