×

Local influence analysis for regression models with scale mixtures of skew-normal distributions. (English) Zbl 1511.62164

Summary: The robust estimation and the local influence analysis for linear regression models with scale mixtures of multivariate skew-normal distributions have been developed in this article. The main virtue of considering the linear regression model under the class of scale mixtures of skew-normal distributions is that they have a nice hierarchical representation which allows an easy implementation of inference. Inspired by the expectation maximization algorithm, we have developed a local influence analysis based on the conditional expectation of the complete-data log-likelihood function, which is a measurement invariant under reparametrizations. This is because the observed data log-likelihood function associated with the proposed model is somewhat complex and with Cook’s well-known approach it can be very difficult to obtain measures of the local influence. Some useful perturbation schemes are discussed. In order to examine the robust aspect of this flexible class against outlying and influential observations, some simulation studies have also been presented. Finally, a real data set has been analyzed, illustrating the usefulness of the proposed methodology.

MSC:

62J05 Linear regression; mixed models
62J20 Diagnostics, and linear inference and regression
62H05 Characterization and structure theory for multivariate probability distributions; copulas
62H10 Multivariate distribution of statistics
62H12 Estimation in multivariate analysis
Full Text: DOI

References:

[1] Andrews, D. F. and Mallows, C. L. 1974. Scale mixtures of normal distributions. J. R. Stat. Soc. B, 36: 99-102. · Zbl 0282.62017
[2] Arellano-Valle, R. B., Bolfarine, H. and Lachos, V. H. 2005. Skew-normal linear mixed models. J. Data Sci., 3: 415-438.
[3] Arellano-Valle, R. B. and Genton, M. G. 2005. On fundamental skew distributions. J. Multivariate Anal., 96: 93-116. · Zbl 1073.62049 · doi:10.1016/j.jmva.2004.10.002
[4] Azzalini, A. 1985. A class of distributions which includes the normal ones. Scand. J. Stat., 12: 171-178. · Zbl 0581.62014
[5] Azzalini, A. and Capitanio, A. 1999. Statistical applications of the multivariate skew normal distribution. J. R. Stat. Soc. B, 61: 579-602. · Zbl 0924.62050 · doi:10.1111/1467-9868.00194
[6] Azzalini, A. and Capitanio, A. 2003. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J. R. Stat. Soc. B, 65: 367-389. · Zbl 1065.62094 · doi:10.1111/1467-9868.00391
[7] Azzalini, A. and Dalla-Valle, A. 1996. The multivariate skew-normal distribution. Biometrika, 83: 715-726. · Zbl 0885.62062 · doi:10.1093/biomet/83.4.715
[8] Azzalini, A. and Genton, M. G. 2008. Robust likelihood methods based on the skew-t and related distributions. Int. Stat. Rev., 76: 106-129. · Zbl 1206.62102 · doi:10.1111/j.1751-5823.2007.00016.x
[9] Berkane, M., Kano, Y. and Bentler, P. M. 1994. Pseudo maximum likelihood estimation in elliptical theory: Effects of misspecification. Comput. Stat. Data Anal., 18: 255-267. · doi:10.1016/0167-9473(94)90175-9
[10] Branco, M. D. and Dey, D. K. 2001. A general class of multivariate skew-elliptical distributions. J. Multivariate Anal., 79: 99-113. · Zbl 0992.62047 · doi:10.1006/jmva.2000.1960
[11] Brownlee, K. A. 1960. Statiscal Theory and Methodology in Science and Engineering, New York: Wiley. · Zbl 0089.34905
[12] Cook, R. D. 1977. Detection of influential observations in linear regression. Technometrics, 19: 15-18. · Zbl 0371.62096
[13] Cook, R. D. 1986. Assessment of local influence (with discussion). J. R. Stat. Soc. B, 48: 133-169. · Zbl 0608.62041
[14] Galea-Rojas, M., Paula, G. A. and Cysneiros, F. J.A. 2005. On diagnostics in symmetrical nonlinear models. Stat. Prob. Lett., 73: 459-467. · Zbl 1071.62063
[15] Galea-Rojas, M., Paula, G. A. and Uribe-Opazo, M. 2003. On influence diagnostic in univariate elliptical linear regression models. Stat. Pap., 44: 23-45. · Zbl 1010.62066
[16] Johnson, N. L., Kotz, S. and Balakrishnan, N. 1994. Continuous Univariate Distributions, Vol. 1, New York: John Wiley. · Zbl 0811.62001
[17] Kim, H. M. 2008. A note on scale mixtures of skew normal distribution. Stat. Prob. Lett., 78: 1694-1701. · Zbl 1152.62032 · doi:10.1016/j.spl.2008.01.008
[18] Lachos, V. H., Bolfarine, H., Arellano-Valle, R. B. and Montenegro, L. C. 2007. Likelihood based inference for multivariate skew-normal regression models. Commun. Stat. Theory Methods, 36: 1769-1786. · Zbl 1124.62037
[19] V.H. Lachos, P. Ghosh and R.B. Arellano-Valle, Likelihood based inference for skew-normal/independent linear mixed models, preprint (2009), to appear in Statistica Sinica
[20] Lange, K. L., Little, J. A. and Taylor, M. G. 1989. Robust Statistical modeling using the t distribution. J. Am. Stat. Assoc., 84: 881-896.
[21] Lange, K. L. and Sinsheimer, J. S. 1993. Normal/independent distributions and their applications in robust regression. J. Comput. Graph. Stat., 2: 175-198.
[22] Lee, S. Y., Lu, B. and Song, X. Y. 2006. Assessing local influence for nonlinear structural equation models with ignorable missing data. Comput. Stat. Data Anal., 50: 1356-1377. · Zbl 1432.62236 · doi:10.1016/j.csda.2004.11.012
[23] Lee, S. Y. and Xu, L. 2004. Influence analysis of nonlinear mixed-effects models. Comput. Stat. Data Anal., 45: 321-341. · Zbl 1429.62280 · doi:10.1016/S0167-9473(02)00303-1
[24] Lessaffre, E. and Verbeke, G. 1998. Local influence in linear mixed models. Biometrics, 54: 570-582. · Zbl 1058.62623
[25] Lin, T. I., Lee, J. C. and Hsieh, W. J. 2007. Robust mixture modeling using the skew t distribution. Stat. and Comput., 17: 81-92. · doi:10.1007/s11222-006-9005-8
[26] Liu, C. 1996. Bayesian roboust linear regression with incomplete data. J. Am. Stat. Assoc., 91: 1219-1227. · Zbl 0880.62028
[27] Magnus, J. R. and Neudecker, H. 1988. Matrix Differential Calculus with Applications in Statistics and Econometrics, New York: John Wiley. · Zbl 0651.15001 · doi:10.2307/2531754
[28] Ortega, E. M., Bolfarine, H. and Paula, G. A. 2003. Influence diagnostics in generalized log-gamma regression models. Comput. Stat. Data Anal., 42: 165-186. · Zbl 1429.62336 · doi:10.1016/S0167-9473(02)00104-4
[29] Osorio, F. 2006. “Diagnóstico de influência em modelos elípticos com efeitos mistos”. Brazil: Department of Statistics, University of São Paulo. Unpublished Ph.D. diss.
[30] Osorio, F., Paula, G. A. and Galea, M. 2007. Assessment of local influence in elliptical linear models with longitudinal structure. Comput. Stat. Data Anal., 51: 4354-4368. · Zbl 1162.62367 · doi:10.1016/j.csda.2006.06.004
[31] Poon, W. Y. and Poon, Y. S. 1999. Conformal normal curvature and assessment of local influence. J. R. Stat. Soc. B, 61: 51-61. · Zbl 0913.62062
[32] R Development Core Team, R: A Language and Environment for Stat. Computing, R Foundation for Stat. Computing, Vienna, Austria, ISBN 3-900051-07-0
[33] M.C. Russo, G.A. Paula, and R. Aoki, Influence diagnosis in nonlinear mixed-effects elliptical models, preprint (2009), to appear in Computational Statistics & Data Analysis
[34] Sahu, S. K., Dey, D. K. and Branco, M. D. 2003. A new class of multivariate skew distributions with applications to bayesian regression models. Can. J. Stat., 31: 129-150. · Zbl 1039.62047 · doi:10.2307/3316064
[35] Wang, J., Boyer, J. and Genton, M. G. 2004. A skew-symmetric representation of multivariate distributions. Stat. Sin., 14: 1259-1270. · Zbl 1060.62059
[36] Wang, J. and Genton, M. G. 2006. The multivariate skew-slash distribution. J. Stat. Plan. Inference, 136: 209-220. · Zbl 1081.60013 · doi:10.1016/j.jspi.2004.06.023
[37] Wei, G. C.G. and Tanner, M. A. 1990. A monte carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms. J. Am. Stat. Assoc., 85: 699-704.
[38] Zhou, T. and He, X. 2008. Three-step estimation in linear mixed models with skew-t distributions. J. Stat. Plan. Inference, 138: 1542-1555. · Zbl 1131.62016 · doi:10.1016/j.jspi.2007.04.033
[39] Zhu, H. and Lee, S. 2001. Local influence for incomplete-data models. J. R. Stat. Soc. B, 63: 111-126. · Zbl 0976.62071 · doi:10.1111/1467-9868.00279
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.