×

Polynomial tau functions of symplectic KP and multi-component symplectic KP hierarchies. (English) Zbl 1511.37078

The authors study the multi-component symplectic KP hierarchy. In particular, they show that the polynomial tau-function of the symplectic KP hierarchy can be realised as a zero mode of a certain combinatorial generating function. This result is then extended to the multi-component symplectic KP hierarchy. Furthermore, the authors express the polynomial tau-function of the multi-component symplectic KP hierarchy as a determinant. Some Vandermonde-like identities are used for this purpose.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K20 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with algebraic geometry, complex analysis, and special functions
17B65 Infinite-dimensional Lie (super)algebras
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
17B80 Applications of Lie algebras and superalgebras to integrable systems
Full Text: DOI

References:

[1] Macdonald, IG, Symmetric functions and Hall polynomials (1979), Oxford Mathematical Monographs: Clarendon Press, Oxford, Oxford Mathematical Monographs · Zbl 0487.20007
[2] Fulton, W.; Harris, J., Representation theory (1991), New York: A first course. Springer-Verlag, New York · Zbl 0744.22001
[3] Stanley, RP, Enumerative Combinatorics (1999), Cambridge: Cambridge University Press, Cambridge · Zbl 0928.05001 · doi:10.1017/CBO9780511609589
[4] Weyl, H., The classical groups; their invariants and representations (1946), Princeton: Princeton Univ. Press, Princeton · Zbl 1024.20502
[5] Schur, I., \( \ddot{U}\) ber die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrocheme lineare Substitionen, J. Reine Angew. Math., 139, 155-250 (1911) · JFM 42.0154.02
[6] Hoffman, P.; Humphreys, J., Projective representations of the symmetric groups (1992), Oxford University Press, New York: Q-functions and shifted tableaux. The Clarendon Press, Oxford University Press, New York · Zbl 0777.20005
[7] Stembridge, JR, Shifted tableaux and the projective representations of symmetric groups, Adv. in Math., 74, 87-134 (1989) · Zbl 0677.20012 · doi:10.1016/0001-8708(89)90005-4
[8] Miwa, T.; Jimbo, M.; Date, E., Solitons: Differential equations, symmetries and infinite dimensional algebras (2000), Cambridge: Cambridge University Press, Cambridge · Zbl 0986.37068
[9] Y. You, Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups, in Infinite-Dimensional Lie Algebras and Groups (Luminy-Marseille, 1988), Adv. Ser. Math. Phys., Vol. 7, World Sci. Publ., Teaneck, NJ, (1989) 449-464. · Zbl 0744.35052
[10] J. Nimmo, Hall-Littlewood symmetric functions and the BKP equation. J. Phys, A: Mark Gen. 23 (1990), 751-760. · Zbl 0721.35069
[11] Sato, M., Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold, RIMS Kokyuroku, 439, 30-46 (1981) · Zbl 0507.58029
[12] Kac, VG; van de Leur, JW, Equivalence of formulations of the MKP hierarchy and its polynomial tau-functions, Jpn. J. Math., 13, 235-271 (2018) · Zbl 1401.14209 · doi:10.1007/s11537-018-1803-1
[13] V. G. Kac, J. W. van de Leur, Polynomial tau-functions for the multi-component KP hierarchy, PRIMS (2020). arXiv:1901.07763.
[14] Rozhkovskaya, N., Multiparameter Schur Q-functions are solutions of the BKP hierarchy, Symmetry Integrability Geom. Methods Appl., 15, 065 (2019) · Zbl 1423.05194
[15] Kac, VG; Rozhkovskaya, N., Johan van de Leur, Polynomial tau-functions of the KP, BKP, and the \(s\)-component KP hierarchies, J. Math. Phys., 62, 021702 (2021) · Zbl 1464.37073 · doi:10.1063/5.0013017
[16] Date, E.; Jimbo, M.; Kashiwara, M.; Miwa, T., Operator approach to the Kadomtsev-Petviashvili equation-transformation groups for soliton equations III, J. Phys. Soc. Japan, 50, 3806-3812 (1981) · Zbl 0571.35099 · doi:10.1143/JPSJ.50.3806
[17] Date, E.; Kashiwara, M.; Jimbo, M.; Miwa, T., Transformation groups for soliton equations, in Nonlinear Integrable Systems-Classical Theory and Quantum Theory (Kyoto, 1981), 39-119 (1983), Singapore: World Sci. Publishing, Singapore · Zbl 0571.35098
[18] Li, C., Multi-component universal character hierarchy and its polynomial tau-functions, Physica D, 432, 133166 (2022) · Zbl 1483.14060 · doi:10.1016/j.physd.2022.133166
[19] Koike, K.; Terada, I., Young diagrammatic methods for the representation theory of the classical groups of type \(B_n, C_n, D_n\), J. Algebra, 107, 466-511 (1987) · Zbl 0622.20033 · doi:10.1016/0021-8693(87)90099-8
[20] Baker, TH, Vertex operator realization of symplectic and orthogonal S-functions, J. Phys. A: Math. Gen, 29, 3099-3117 (1996) · Zbl 0895.05066 · doi:10.1088/0305-4470/29/12/017
[21] Jing, N.; Nie, B., Vertex operators, Weyl determinant formulae and Littlewood duality, Ann. Combin., 19, 427-442 (2015) · Zbl 1368.17029 · doi:10.1007/s00026-015-0271-z
[22] Huang, F.; Wang, N., Generalized symplectic Schur functions and SUC hierarchy, J. Math. Phys., 61, 061508 (2020) · Zbl 1456.37074 · doi:10.1063/1.5120855
[23] Li, C., Two-component symplectic universal characters and integrable hierarchies, Int. J. Math., 32, 2150045 (2021) · Zbl 1477.37075 · doi:10.1142/S0129167X21500452
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.