×

The twisted Baker map. (English) Zbl 1511.37030

Summary: As a model to provide a hands-on, elementary understanding of ‘vortex dynamics’, we introduce a piecewise linear non-invertible map called a twisted baker map. We show that the set of hyperbolic repelling periodic points with complex conjugate eigenvalues and that without complex conjugate eigenvalues are simultaneously dense in the phase space. We also show that these two sets equidistribute with respect to the normalised Lebesgue measure, in spite of a non-uniformity in their Lyapunov exponents.

MSC:

37C05 Dynamical systems involving smooth mappings and diffeomorphisms
37E40 Dynamical aspects of twist maps
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics
37D25 Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)

References:

[1] Alexander, J. C.; Yorke, J. A., Fat baker’s transformations, Ergod. Theor. Dynam. Syst., 4, 1-23 (1984) · Zbl 0553.58020 · doi:10.1017/S0143385700002236
[2] Farmer, J. D.; Ott, E.; Yorke, J. A., The dimension of chaotic attractors, Physica D, 7, 153-80 (1983) · Zbl 0561.58032 · doi:10.1016/0167-2789(83)90125-2
[3] Halmos, P. R., Lectures on Ergodic Theory (1956), New York: Chelsea Publishing Company, New York · Zbl 0073.09302
[4] Kolmogorov, A. N., The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Proc. R. Soc. A, 30, 301-5 (1941) · JFM 67.0850.06 · doi:10.1098/rspa.1991.0075
[5] Saiki, Y.; Takahasi, H.; Yorke, J. A., Piecewise linear maps with heterogeneous chaos, Nonlinearity, 34, 5744-61 (2021) · Zbl 1476.37038 · doi:10.1088/1361-6544/ac0d45
[6] Seidel, W., Note on a metrically transitive system, Proc. Natl Acad. Sci. USA, 19, 453-6 (1933) · JFM 59.0269.02 · doi:10.1073/pnas.19.4.453
[7] Weisstein, E WSeries multisection from mathworld- a wolfram web resource(available at: https://mathworld.wolfram.com/SeriesMultisection.html)
[8] Zammert, S.; Eckhardt, B., Streamwise and doubly-localised periodic orbits in plane Poiseuille flow, J. Fluid Mech., 761, 348-59 (2014) · doi:10.1017/jfm.2014.633
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.