×

Normalized solutions to a Schrödinger-Bopp-Podolsky system under Neumann boundary conditions. (English) Zbl 1511.35152

Summary: In this paper, we study a Schrödinger-Bopp-Podolsky (SBP) system of partial differential equations in a bounded and smooth domain of \(\mathbb{R}^3\) with a nonconstant coupling factor. Under a compatibility condition on the boundary data we deduce existence of solutions by means of the Ljusternik-Schnirelmann theory.

MSC:

35J58 Boundary value problems for higher-order elliptic systems
35J61 Semilinear elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence

References:

[1] D. G. Afonso, Normalized solutions for a Schrödinger-Bopp-Podolsky system, M.Sc. dissertation, Universidade de São Paulo (2020).
[2] Agmon, S., Douglis, A. and Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math.12 (1959) 623-727. · Zbl 0093.10401
[3] Benci, V. and Fortunato, D., An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal.11 (1998) 283-293. · Zbl 0926.35125
[4] Chen, S. and Tang, X., On the critical Schrödinger-Bopp-Podolsky system with general nonlinearities, Nonlinear Anal.195 (2020) 111734. · Zbl 1437.35265
[5] d’Avenia, P. and Siciliano, G., Nonlinear Schrödinger equation in the Bopp-Podolsky electrodynamics: Solutions in the electrostatic case, J. Differential Equations267 (2019) 1025-1065. · Zbl 1432.35080
[6] G. M. Figueiredo and G. Siciliano, Multiple solutions for a Schrödinger-Bopp-Podolsky system with positive potentials, preprint (2020); arXiv:2006.12637.
[7] Gazzola, F., Grunau, H.-C. and Sweers, G., Polyharmonic Boundary Value Problems (Springer, 2010). · Zbl 1239.35002
[8] Hebey, E., Electro-magneto-static study of the nonlinear Schrödinger equation coupled with Bopp-Podolsky electrodynamics in the Proca setting, Discrete Contin. Dyn. Syst.39(11) (2019) 6683-6712. · Zbl 1428.35515
[9] Li, L., Pucci, P. and Tang, X., Ground state solutions for the nonlinear Schrödinger-Bopp-Podolsky system with critical Sobolev exponent, Adv. Nonlinear Stud.20(3) (2020) 511-538. · Zbl 1453.35079
[10] B. Mascaro and G. Siciliano, Positive solutions for a Schrödinger-Bopp-Podolsky system in \(\mathbb{R}^3\), preprint (2020); arXiv:2009.08531.
[11] Pisani, L. and Siciliano, G., Neumann condition in the Schrödinger-Maxwell system, Topol. Methods Nonlinear Anal.29 (2007) 251-264. · Zbl 1157.35480
[12] Pisani, L. and Siciliano, G., Constrained Schrödinger-Poisson system with non-constant interaction, Commun. Contemp. Math.15(1) (2013) 1250052. · Zbl 1260.35164
[13] Siciliano, G. and Silva, K., The fibering method approach for a non-linear Schrödinger equation coupled with the electromagnetic field, Publ. Mat.64 (2020) 373-390. · Zbl 1448.35171
[14] Szulkin, A., Ljusternik-Schnirelman theory on \(C^1\)-manifolds, Ann. Inst. Henri Poincaré Anal. Non Linéaire5(2) (1988) 119-139. · Zbl 0661.58009
[15] Taylor, M. E., Partial Differential Equations I (Springer, 1996). · Zbl 0869.35004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.