×

The weak min-max property in Banach spaces. (English) Zbl 1511.30008

Since their introduction in 1978 as a tool for studying injectivity theorems in \(\mathbb{R}^n\), uniform domains have been successfully applied in classical function theory, quasiconformal mappings, and other fields of mathematical analysis.
Motivated by previous results of Rasila and Zhou, the authors introduce a new condition which the call the weak min-max property, and use it to characterize diameter uniform domains in Banach spaces of dimension at least 2. As a consequence of their main results, the authors also prove that diameter uniform domains are invariant under relatively quasimöbius mappings.

MSC:

30C65 Quasiconformal mappings in \(\mathbb{R}^n\), other generalizations
30C20 Conformal mappings of special domains

References:

[1] Gehring, F. W., and Hag, K., Remarks on uniform and quasiconformal extension domains, Complex Variables Theory Appl. 9 (1987), no. 2-3, 175-188. https://doi.org/10.1080/17476938708814261
Gehring, F. W., and Osgood, B. G., Uniform domains and the quasi-hyperbolic metric, J. Anal. Math. 36 (1979), 50-74. https://doi.org/10.1007/BF02798768
Gehring, F. W., and Palka, B. P., Quasiconformally homogeneous domains, J. Anal. Math. 30 (1976), 172-199. https://doi.org/10.1007/BF02786713
Huang, M., Li, Y., Vuorinen, M., and Wang, X., On quasimöbius maps in real Banach spaces, Israel J. Math. 198 (2013), no. 1, 467-486. https://doi.org/10.1007/s11856-013-0043-6
Jones, P. W., Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), no. 1, 41-66. https://doi.org/10.1512/iumj.1980.29.29005
Li, Y., Ponnusamy, S., and Zhou, Q., Sphericalization and flattening preserve uniform domains in non-locally compact metric spaces, J. Aust. Math. Soc. 112 (2022), no. 1, 68-89. https://doi.org/10.1017/S1446788719000582
Li, Y., Vuorinen, M., and Zhou, Q., Weakly quasisymmetric maps and uniform spaces, Comput. Methods Funct. Theory 18 (2018), no. 4, 689-715. https://doi.org/10.1007/s40315-018-0248-0
Li, Y., Vuorinen, M., and Zhou, Q., Apollonian metric, uniformity and Gromov hyperbolicity, Complex Var. Elliptic Equ. 65 (2020), no. 2, 215-228. https://doi.org/10.1080/17476933.2019.1579203
Martio, O., Definitions of uniform domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), 197-205.
Martio, O., and Sarvas, J., Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1978), no. 1, 383-401. https://doi.org/10.5186/aasfm.1980.0517
Väisälä, J., Quasi-Möbius maps, J. Anal. Math. 44 (1984/85), 218-234. https://doi.org/10.1007/BF02790198
Väisälä, J., Uniform domains, Tohoku Math. J. (2) 40 (1988), no. 1, 101-118. https://doi.org/10.2748/tmj/1178228081
Väisälä, J., Free quasiconformality in Banach spaces. II, Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991), no. 2, 255-310. https://doi.org/10.5186/aasfm.1991.1629
Väisälä, J., The free quasiworld. Freely quasiconformal and related maps in Banach spaces, Quasiconformal geometry and dynamics (Lublin 1996), 55-118, Banach Center Publ. 48, Polish Acad. Sci. Inst. Math., Warsaw, 1999.
Väisälä, J., Broken tubes in Hilbert spaces, Analysis (Munich) 24 (2004), no. 3, 227-238. https://doi.org/10.1524/anly.2004.24.14.227
Vuorinen, M., Capacity densities and angular limits of quasiregular mappings, Trans. Amer. Math. Soc. 263 (1981), no. 2, 343-354. https://doi.org/10.2307/1998354
Zhou, Q., and Rasila, A., Quasimöbius invariance of uniform domains, Studia Math. 261 (2021), no. 1, 1-24. https://doi.org/10.4064/sm191215-22-10 · doi:10.1080/17476938708814261{\par}Gehring,
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.