×

Conormal varieties on the cominuscule Grassmannian. (English) Zbl 1511.14079

Greenstein, Jacob (ed.) et al., Interactions of quantum affine algebras with cluster algebras, current algebras and categorification. In honor of Vyjayanthi Chari on the occasion of her 60th birthday. Based on the summer school and the conference, Washington, DC, USA, June 2018. Cham: Birkhäuser. Prog. Math. 337, 359-392 (2021).
Summary: Let \(G\) be a simply connected, almost simple group over an algebraically closed field \(\mathbf{k}\) of characteristic \(p\), where either \(p = 0\) or \(p\) is an odd prime which is also a good prime for \(G\). Let \(P\) be a maximal parabolic subgroup corresponding to omitting a cominuscule root. We construct a compactification \(\phi : T^\ast G /P \rightarrow X(u)\), where \(X(u)\) is a Schubert variety in a partial affine flag variety associated with the loop group \(G \left(\mathbf{k}[t,t^{-1}]\right)\). Let \(N^\ast X(w) \subseteq T^\ast G /P\) be the conormal variety of some Schubert variety \(X(w)\) in \(G / P\); hence we obtain that the closure of \(\phi (N^\ast X(w))\) in \(X(u)\) is a \(B\)-stable compactification of \(N^\ast X(w)\). We further show that this compactification is a Schubert subvariety of \(X(u)\) if and only if \(X (w_0 w) \subseteq G /P\) is smooth, where \(w_0\) is the longest element in the Weyl group of \(G\). This result is applied to compute the conormal fibre at the zero matrix in any determinantal variety.
For the entire collection see [Zbl 1481.17001].

MSC:

14M15 Grassmannians, Schubert varieties, flag manifolds
17B37 Quantum groups (quantized enveloping algebras) and related deformations
13F60 Cluster algebras
16T20 Ring-theoretic aspects of quantum groups

References:

[1] Pramod N. Achar and Anthony Henderson, Geometric Satake, Springer correspondence and small representations, Selecta Math. (N.S.) 19 (2013), no. 4, 949-986. MR3131493 · Zbl 1319.17003
[2] Michel Brion and Shrawan Kumar, Frobenius splitting methods in geometry and representation theory, Progress in Mathematics, vol. 231, Birkhäuser Boston, Inc., Boston, MA, 2005. MR2107324 · Zbl 1072.14066
[3] Sara C. Billey and Stephen A. Mitchell, Smooth and palindromic Schubert varieties in affine Grassmannians, J. Algebraic Combin. 31 (2010), no. 2, 169-216. MR2592076 · Zbl 1235.14048
[4] Armand Borel, Linear algebraic groups, second ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR1102012 · Zbl 0726.20030
[5] Nicolas Bourbaki, éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968. MR0240238 · Zbl 0186.33001
[6] Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985, Conjugacy classes and complex characters, A Wiley-Interscience Publication. MR794307
[7] Gerd Faltings, Algebraic loop groups and moduli spaces of bundles, J. Eur. Math. Soc. (JEMS) 5 (2003), no. 1, 41-68. MR1961134 · Zbl 1020.14002
[8] Victor Ginzburg, Lectures on Nakajima’s quiver varieties, preprint arXiv:0905.0686 (2009). · Zbl 1305.16009
[9] Terence Gaffney and Michelle Molino, Determinantal symmetric singularities and Whitney equisingularity, Ph.D. thesis, Universidade Federal Fluminense, 2018.
[10] Terence Gaffney and Antoni Rangachev, Pairs of modules and determinantal isolated singularities, arXiv preprint arXiv:1501.00201 (2014). · Zbl 1427.32020
[11] Victor, G., Kac, Infinite-dimensional Lie algebras,, MR1104219 (1990), Cambridge: Cambridge University Press, Cambridge · Zbl 0716.17022
[12] Knutson, Allen; Miller, Ezra, Subword complexes in Coxeter groups, Advances in Mathematics, 184, 1, 161-176 (2004) · Zbl 1069.20026 · doi:10.1016/S0001-8708(03)00142-7
[13] Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, Birkhäuser Boston, Inc., Boston, MA, 2002. MR1923198 · Zbl 1026.17030
[14] V. Lakshmibai, Cotangent bundle to the Grassmann variety, Transform. Groups 21 (2016), no. 2, 519-530. MR3492046 · Zbl 1390.14148
[15] Peter Littelmann, Bases for representations, LS-paths and Verma flags, 323-345. MR2017591 · Zbl 1106.17003
[16] V. Lakshmibai and K. N. Raghavan, Standard monomial theory, Encyclopaedia of Mathematical Sciences, vol. 137, Springer-Verlag, Berlin, 2008, Invariant theoretic approach, Invariant Theory and Algebraic Transformation Groups, 8. MR2388163 · Zbl 1137.14036
[17] V. Lakshmibai, Vijay Ravikumar, and William Slofstra, The cotangent bundle of a cominuscule Grassmannian, Michigan Math. J. 65 (2016), no. 4, 749-759. MR3579184 · Zbl 1390.14149
[18] V. Lakshmibai and C. S. Seshadri, Geometry ofG∕P. II. The work of de Concini and Procesi and the basic conjectures, vol. 87, 1978, pp. 1-54. MR490244 · Zbl 0447.14011
[19] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447-498. MR1035415 · Zbl 0703.17008
[20] Marquis, Timothée, An introduction to Kac-Moody groups over fields, MR3838421 (2018), European Mathematical Society (EMS), Zürich: EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich · Zbl 1405.20003 · doi:10.4171/187
[21] Vikram B. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2) 122 (1985), no. 1, 27-40. MR799251 · Zbl 0601.14043
[22] Bertrand Rémy, Groupes de Kac-Moody déployés et presque déployés, vol. 277, Société mathématique de France, 2002. · Zbl 1001.22018
[23] T. A. Springer, The unipotent variety of a semi-simple group, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, pp. 373-391. MR0263830 · Zbl 0195.50803
[24] Elisabetta Strickland, On the conormal bundle of the determinantal variety, J. Algebra 75 (1982), no. 2, 523-537. MR653906 · Zbl 0493.14030
[25] Jacques Tits, Uniqueness and presentation of Kac-Moody groups over fields, J. Algebra 105 (1987), no. 2, 542-573. MR873684 · Zbl 0626.22013
[26] Jerzy Weyman, Cohomology of vector bundles and syzygies, Cambridge Tracts in Mathematics, vol. 149, Cambridge University Press, Cambridge, 2003. MR1988690 · Zbl 1075.13007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.