×

Positivity of Hodge bundles of abelian varieties over some function fields. (English) Zbl 1511.14039

Summary: The main result of this paper concerns the positivity of the Hodge bundles of abelian varieties over global function fields. As applications, we obtain some partial results on the Tate-Shafarevich group and the Tate conjecture of surfaces over finite fields.

MSC:

14G17 Positive characteristic ground fields in algebraic geometry
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
14G25 Global ground fields in algebraic geometry
14K15 Arithmetic ground fields for abelian varieties

References:

[1] Anantharaman, S., Schémas en groupes, espaces homogénes et espaces algébriques sur une base de dimension 1, in Sur les groupes algébriques, , vol. 33 (Société mathématique de France, 1973), 5-79. · Zbl 0286.14001
[2] Artin, M. and Swinnerton-Dyer, H. P. F., The Shafarevich-Tate conjecture for pencils of elliptic curves on K3 surfaces, Invent. Math. 20 (1973), 249-266. · Zbl 0289.14003
[3] Barton, C. M., Tensor products of ample vector bundles in characteristic p, Amer. J. Math. 93 (1971), 429-438. · Zbl 0221.14011
[4] Bauer, W., On the conjecture of Birch and Swinnerton-Dyer for abelian varieties over function fields in characteristic \(p > 0\). Invent. Math. 108 (1992), 263-287. · Zbl 0807.14014
[5] Bosch, S., Lütkebohmert, W. and Raynaud, M., Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), , vol. 21 (Springer, Berlin, 1990). · Zbl 0705.14001
[6] Bost, J. B., Germs of analytic varieties in algebraic varieties: canonical metrics and arithmetic algebraization theorems, , vol. I, II (Walter de Gruyter, Berlin, 2004), 371-418. · Zbl 1067.14021
[7] Conrad, B., Gabber, O. and Prasad, G., Pseudo-reductive groups (Cambridge University Press, 2010). · Zbl 1216.20038
[8] Chai, C.-L., Monodromy of Hecke-invariant subvarieties, Pure Appl. Math. Q. 1 (2005), 291-303. · Zbl 1140.11031
[9] Charles, F., The Tate conjecture for K3 surfaces over finite fields, Invent. Math. 194 (2013), 119-145. · Zbl 1282.14014
[10] Conrad, B., Chow’s \(K/k\)-image and \(K/k\)-trace, and the Lang-Néron theorem, Enseign. Math. (2)52 (2006), 37-108. · Zbl 1133.14028
[11] Dieudonné, J. and Grothendieck, A., Éléments de géométrie algébrique, Publ. Math. Inst. Hautes Études Sci. 4, 8, 11, 17, 20, 24, 28, 32 (1960-1967). · Zbl 0203.23301
[12] Faltings, G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. (German) [Finiteness theorems for abelian varieties over number fields], Invent. Math. 73 (1983), 349-366. · Zbl 0588.14026
[13] Faltings, G. and Chai, C., Degeneration of abelian varieties, , vol. 22 (Springer, Berlin, 1990), with an appendix by David Mumford. · Zbl 0744.14031
[14] Ghioca, D., Elliptic curves over the perfect closure of a function field, Canad. Math. Bull. 53 (2010), 87-94. · Zbl 1277.11076
[15] Ghioca, D. and Moosa, R., Division points on subvarieties of isotrivial semi-abelian varieties, Int. Math. Res. Not. (IMRN)2006 (2006), 65437. · Zbl 1119.14017
[16] Hartshorne, R., Ample vector bundles, Publ. Math. Inst. Hautes Études Sci. 29 (1966), 63-94. · Zbl 0173.49003
[17] Hartshorne, R., Ample vector bundles on curves, Nagoya Math. J. 43 (1971), 73-89. · Zbl 0218.14018
[18] Huybrechts, D. and Lehn, M., The geometry of moduli spaces of sheaves, , vol. 31 (Friedr. Vieweg & Sohn, Braunschweig, 1997). · Zbl 0872.14002
[19] De Jong, A. J., Homomorphisms of Barsotti-Tate groups and crystals in positive characteristic, Invent. Math. 134 (1998), 301-333. · Zbl 0929.14029
[20] Künnemann, K., Projective regular models for abelian varieties, semi-stable reduction, and the height pairing, Duke Math. J. 95 (1998), 161-212. · Zbl 0955.14017
[21] Kato, K. and Trihan, F., On the conjectures of Birch and Swinnerton-Dyer in characteristic \(p>0\), Invent. Math. 153 (2003), 537-592. · Zbl 1046.11047
[22] Kim, M., Purely inseparable points on curves of higher genus, Math. Res. Lett. 4 (1997), 663-666. · Zbl 0906.14016
[23] Koblitz, N., \(p\)-adic variation of the zeta-function over families of varieties defined over finite fields, Compos. Math. 31 (1975), 119-218. · Zbl 0332.14008
[24] Langer, A., Semistable sheaves in positive characteristic, Ann. of Math. (2)159 (2004), 251-276. · Zbl 1080.14014
[25] Lazarsfeld, R., Positivity in algebraic geometry. II: Positivity for vector bundles, and multiplier ideals, (Springer, Berlin, 2004). · Zbl 1093.14500
[26] Moret-Bailly, L., Familles de courbes et de variétés abéliennes II. Exemples, in Séminaire sur les pinceaux de courbes de genre au moins deux, ed. L. Szpiro, Astérisque, vol. 86 (Société mathématique de France, 1981). · Zbl 0515.14007
[27] Moret-Bailly, L., Pinceaux de variéte’s abéliennes, Astérisque, vol. 129 (Société mathématique de France, 1985). · Zbl 0595.14032
[28] Milne, J. S., The Tate-Šafarevič group of a constant abelian variety, Invent. Math. 6 (1968), 91-105. · Zbl 0159.22402
[29] Milne, J. S., Elements of order \(p\) in the Tate-Šafarevič group, Bull. London Math. Soc. 2 (1970), 293-296. · Zbl 0205.50801
[30] Milne, J. S., On a conjecture of Artin and Tate, Ann. of Math. (2)102 (1975), 517-533. · Zbl 0343.14005
[31] Milne, J. S., Étale cohomology (Princeton University Press, Princeton, 1980). · Zbl 0433.14012
[32] Milne, J. S., Algebraic groups: the theory of group schemes of finite type over a field, , vol. 170 (Cambridge University Press, 2017). · Zbl 1390.14004
[33] Milne, J. S., Abelian varieties, available at https://www.jmilne.org/math/CourseNotes/AV.pdf (2016). · Zbl 0604.14028
[34] Maulik, D., Supersingular K3 surfaces for large primes, with an appendix by Andrew Snowden, Duke Math. J. 163 (2014), 2357-2425. · Zbl 1308.14043
[35] Morrow, M., A variational Tate conjecture in crystalline cohomology, J. Eur. Math. Soc. (JEMS)21 (2019), 3467-3511. · Zbl 1430.14026
[36] Madapusi Pera, K., The Tate conjecture for K3 surfaces in odd characteristic, Invent. Math. 201 (2015), 625-668. · Zbl 1329.14079
[37] Mumford, D., An analytic construction of degenerate abelian varieties over complete rings, Compos. Math. 24 (1972), 239-272. · Zbl 0241.14020
[38] Mumford, D., Abelian varieties, second edition (Oxford University Press, 1974). · Zbl 0326.14012
[39] Nguyen, N. H., Whitney theorems and Lefschetz pencils over finite fields, PhD thesis, University of California at Berkeley (2005).
[40] Nygaard, N. and Ogus, A., Tate’s conjecture for K3 surfaces of finite height, Ann. of Math. (2)122 (1985), 461-507. · Zbl 0591.14005
[41] Nygaard, N. O., The Tate conjecture for ordinary K3 surfaces over finite fields, Invent. Math. 74 (1983), 213-237. · Zbl 0557.14002
[42] Oort, F., Subvarieties of moduli spaces, Invent. Math. 24 (1974), 95-119. · Zbl 0259.14011
[43] Oort, F., Newton polygons and formal groups: conjectures by Manin and Grothendieck, Ann. of Math. (2)152 (2000), 183-206. · Zbl 0991.14016
[44] Oort, F., Monodromy, Hecke orbits and Newton polygon strata, Preprint (2003), http://www.math.uu.nl/people/oort.
[45] Poonen, B., Bertini theorems over finite fields, Ann. of Math. (2)160 (2004), 1099-1127. · Zbl 1084.14026
[46] Rössler, D., On the group of purely inseparable points of an abelian variety defined over a function field of positive characteristic, Comment. Math. Helv. 90 (2015), 23-32. · Zbl 1321.11069
[47] Rössler, D., On the group of purely inseparable points of an abelian variety defined over a function field of positive characteristic, II, Algebra Number Theory14 (2020), 1123-1173. · Zbl 1469.11239
[48] Scanlon, T., A positive characteristic Manin-Mumford theorem, Compos. Math. 141 (2005), 1351-1364. · Zbl 1089.03030
[49] Schneider, P., Zur Vermutung von Birch und Swinnerton-Dyer über globalen Funktionenkörpern. (German) [On the conjecture of Birch and Swinnerton-Dyer over global function fields], Math. Ann. 260 (1982), 495-510. · Zbl 0509.14022
[50] Demazure, M. and Grothendieck, A., Séminaire de Géométrie Algébrique du Bois Marie. Schémas en groupes I, II, III, , vol. 151, 152, 153 (Springer, New York, 1970). · Zbl 0209.24201
[51] Deligne, P. and Katz, N., Groupes de Monodromie en Géométrie Algébrique, I, , vol. 288 (Springer, Berlin, 1972), II, Lecture Notes in Mathematics, vol. 340 (Springer, Berlin, 1973).
[52] Tate, J., Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134-144. · Zbl 0147.20303
[53] Tate, J., p-divisible groups, in Proceedings of a conference on local fields (Driebergen, 1966) (Springer, 1967), 158-183. · Zbl 0155.00204
[54] Tate, J. T., On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, , vol. 9, Exp. No. 306 (Société mathématique de France, Paris, 1995), 415-440. · Zbl 0199.55604
[55] Trihan, F. and Yasuda, S., The \(\ell \)-parity conjecture for abelian varieties over function fields of characteristic \(p>0\), Compos. Math. 150 (2014), 507-522. · Zbl 1301.11056
[56] Ulmer, D., Curves and Jacobians over function fields. Arithmetic geometry over global function fields, (Birkhäuser/Springer, Basel, 2014), 283-337. · Zbl 1384.11077
[57] Zarhin, J. G., Endomorphisms of abelian varieties and points of finite order in characteristic p. (Russian), Mat. Zametki21 (1977), 737-744. · Zbl 0358.14011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.