×

PFF-RVM: a new no reference image quality measure. (English) Zbl 1510.94021

Summary: In this paper, a new no-reference image quality metric is proposed and developed. A set of ten perceptual features are extracted from each distorted image, then Relevance Vector Machine (RVM) is employed to learn the mapping between the combined features and human opinion scores. Validation tests and simulations are conducted on the LIVE II and MDID 2013 databases. The predictive performances of this new metric (we called PFF-RVM for perceptual features fusion using relevance vector machine based metric) are compared to the most recent no-reference metrics in terms of correlation and monotonicity. Results show that the proposed metric has satisfactory and comparable performances to the most sophisticated and commonly used no-reference quality metrics in the state-of-the-art.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

Software:

FSIM
Full Text: DOI

References:

[1] A. Ait Abdelouahad, M. El Hassouni, H. Cherifi, D. Aboutajdine, Image quality assessment based on IMF coefficients modeling, in: Proceedings of DICTAP 2011, 2011, pp. 131-145.
[2] Amat, S.; Liandrat, J.; Ruiz, J.; Trillo, J. C., On a family of nonlinear cell-average multiresolution schemes for image processing: An experimental study, Math. Comput. Simulation, 118, 30-48 (2015)
[3] Basak1, D.; Pal, S.; Patranabis, D. C., Support vector regression, Neural Inf. Process. Lett. Rev., 11 (2007)
[4] M. Carnec, P. Le Callet, D. Barba, Visual features for image quality assessment with Reduced reference, in: Proceedings of IEEE ICIP, 2005, pp. 421-424.
[5] Cerimele, M. M.; Cossu, R., A numerical modelling for the extraction of decay regions from color images of monuments, Math. Comput. Simulation, 79, 2334-2344 (2009) · Zbl 1165.94305
[6] Chandler, D. M., Seven challenges in image quality assessment: Past, present, and future research, ISRN Signal Process., 2913, 1-53 (2013)
[7] Chandler, D. M.; Hemami, S. S., VSNR: A wavelet-based visual signal-to-noise ratio for natural images, IEEE Trans. Image Process., 16, 2284-2298 (2007)
[8] Chaofeng, L.; Bovik, A. C.; Wu, X., Blind image quality assessment using a general regression neural network, IEEE Trans. Neural Netw., 22, 793-799 (2011)
[9] Feng, X.; Allebach, J. P., Measurement of ringing artifacts in jpeg images, Proc. SPIE, 6076, 74-83 (2006)
[10] Gu, K.; Jakhetiya, V.; Qiao, J. F.; Li, X.; Lin, W.; Thalmann, D., Model-based referenceless quality metric of 3D synthesized images using local image description, IEEE Trans. Image Process., 27, 394-405 (2018) · Zbl 1409.94193
[11] Gu, K.; Li, L.; Lu, H.; Min, X.; Lin, W., A fast reliable image quality predictor by fusing micro- and macro-structures, IEEE Trans. Ind. Electron., 64, 3903-3912 (2017)
[12] Gu, K.; Lin, W.; Zhai, G.; Yang, X.; Zhang, W.; Chen, C. W., No-reference quality metric of contrast-distorted images based on information maximization, IEEE Trans. Cybern., 47, 4559-4565 (2017)
[13] Gu, K.; Liu, M.; Zhai, G.; Yang, X.; Zhang, W., Quality assessment considering viewing distance and image resolution, IEEE Trans. Broadcast., 61, 520-531 (2015)
[14] Gu, K.; Qiao, J.; Min, X.; Yue, G.; Lin, W.; Thalmann, D., Evaluating quality of screen content images via structural variation analysis, IEEE Trans. Vis. Comput. Graphics (2017)
[15] Gu, K.; Tao, D.; Qiao, J. F.; Lin, W., Learning a no-reference quality assessment model of enhanced images with big data, IEEE Trans. Neural Netw. Learn. Syst., 29, 1301-1313 (2018)
[16] Gu, K.; Zhai, G.; Yang, X.; Zhang, W., Hybrid no-reference quality metric for singly and multiply distorted images, IEEE Trans. Broadcast., 60, 555-567 (2014)
[17] Gu, K.; Zhai, G.; Yang, X.; Zhang, W., Using free energy principle for blind image quality assessment, IEEE Trans. Multimed., 17, 50-63 (2015)
[18] Gu, K.; Zhai, G.; Yang, X.; Zhang, W.; Chen, C. W., Automatic contrast enhancement technology with saliency preservation, IEEE Trans. Circuits Syst. Video Technol., 25, 1480-1494 (2015)
[19] Gu, K.; Zhou, J.; Qiao, J. F.; Zhai, G.; Lin, W.; Bovik, A. C., No-reference quality assessment of screen content pictures, IEEE Trans. Image Process., 26, 4005-4018 (2017) · Zbl 1409.94194
[20] I.P. Gunawanand, M. Ghanbari, Reduced reference picture quality estimation by using local Harmonic amplitude information, in: Proceedings of London Commun. Symp, 2003, pp. 137-140.
[21] Horita, Y.; Arata, S.; Murai, T., No-reference image quality assessment for jpeg/jpeg2000 coding, (Proceeding of EUSIPCO, vol. 2 (2004)), 1301-1304
[22] Jähne, B.; Haubecker, H.; Geibler, P., Handbook of Computer Vision and Applications (1999), Academic Press · Zbl 0954.68147
[23] Jain, R.; Kasturi, R.; Schunck, B. G., Machine Vision (1995), McGraw-Hill, Inc
[24] Jakhetiya, V.; Gu, K.; Lin, W.; Li, Q.; Jaiswal, S. P., A prediction backed model for quality assessment of screen content and 3-D synthesized images, IEEE Trans. Ind. Inf., 14, 652-660 (2018)
[25] Kovesi, P., Image features from phase congruency, Videre: J. Comp. Vis. Res., 1, 1-26 (1999)
[26] T.M. Kusuma, H.J. Zepernick, A reduced-reference perceptual quality metric for in-service image quality assessment, in: Proceedings of Workshop on Mobile Future and Symposium on Trends in Communications, 2003, pp. 71-74.
[27] Lahoulou, A.; Larabi, M. C.; Beghdadi, A.; Viennet, E.; Bouridane, A., Knowledge-based taxonomic scheme for full-reference objective image quality measurement models, J. Imaging Sci. Technol., 60, 6 (2016), 060406-1_060406-15
[28] Lahoulou, A.; Viennet, E.; Bouridane, A., Customizing cost function for optimizing image quality measures performances, Int. J. Electron., 99, 1533-1546 (2012)
[29] Li, C.; Ju, Y.; Bovik, A. C.; Wu, X.; Sang, Q., No-training, no-reference image quality index using perceptual features, Opt. Eng., 52 (2013), 057003-1 - 057003-6
[30] C.L. Lim, R. Paramesran, Blind image quality assessment for color images with additive gaussian white noise using standard deviation, in: 2014 IEEE International Symposium on Intelligent Signal Processing and Communication Systems, ISPACS, 2014, pp. 1-4.
[31] Liu, X.; Huang, L., A new nonlocal total variation regularization algorithm for image denoising, Math. Comput. Simulation, 97, 224-233 (2014) · Zbl 1533.94006
[32] Liu, T. J.; Liu, K. H., No-reference image quality assessment by wide-perceptual-domain scorer ensemble method, IEEE Trans. Image Process., 27, 1138-1151 (2018) · Zbl 1409.94390
[33] Mittal, A.; Moorthy, A. K.; Bovik, A. C., No-reference image quality assessment in the spatial domain, IEEE Trans. Image Process., 21, 4695-4708 (2012) · Zbl 1373.94286
[34] Mittal, A.; Soundararajan, R.; Bovik, A. C., Making a completely blind image quality analyzer, IEEE Signal Process. Lett., 20, 209-212 (2013)
[35] Mohammadi, P.; Ebrahimi-Moghadam, A.; Shirani, S., Subjectiveand objective quality assessment of image: A survey, Majlesi J. Electr. Eng., 9, 55-83 (2015)
[36] Moorthy, A. K.; Bovik, A. C., A two-step framework for constructing blind image quality indices, IEEE Signal Process. Lett., 17, 513-516 (2010)
[37] Moorthy, A. K.; Bovik, A. C., Blind image quality assessment: From naturalscene statistics to perceptual quality, IEEE Trans. Image Process., 20, 3350-3364 (2011) · Zbl 1374.94266
[38] M.C. Morrone, J. Ross, D.C. Burr, R. Owens, Mach bands are phase dependent. Reprinted from: Nature, 324 (1986) 250-253.
[39] Parvez Sazzad, Z. M.; Kawayoke, Y.; Horita, Y., No-reference image quality assessment for jpeg2000 based on spatial features, Signal Process., Image Commun., 23, 257-268 (2008)
[40] R.R. Pastrana-Vidal, J.C. Gicquel, C. Colomes, H. Cherifi, Sporadic frame dropping impact on quality perception, in: Proceedings of SPIE Human Vision and Electronic Imaging IX, 2004, pp. 18-22.
[41] Saad, M. A.; Bovik, A. C.; Charrier, C., A DCT statistics-based blind image quality index, Signal Process. Lett., 17, 583-586 (2010)
[42] Saad, M. A.; Bovik, A. C.; Charrier, C., Blind image quality assessment: A natural scene statistics approach in the DCT domain, IEEE Trans. Image Process., 21, 3339-3352 (2012) · Zbl 1373.94355
[43] SchÖlkopf, B.; Smola, A. J., Learning with Kernels (2002), MIT press: MIT press Cambridge
[44] Sheikh, H. R.; Bovik, A. C.; de Veciana, G., Image information and visual quality, IEEE Trans. Image Process, 15, 430-444 (2006)
[45] Sheikh, H. R.; Sabir, M. F.; Bovik, A. C., A statistical evaluation of recent full reference image quality assessment algorithms, IEEE Trans. Image Process., 15, 3440-3451 (2006)
[46] H.R. Sheikh, Z. Wang, L. Cormack, A.C. Bovik, LIVE Image Quality Assessment Database Release 2, http://live.ece.utexas.edu/research/quality.
[47] Smola, A. J.; Schölkopf, B., A tutorial on support vector regression, Stat. Comput., 14, 199-222 (2004), \(( \varepsilon \)-SVR) [12]\(+\) mercer condition
[48] Teo, P. C.; Heeger, D. J., Perceptual image distortion, (IEEE International Conference Image Processing, vol. 2 (1994)), 982-986
[49] Tipping, M. E., The relevance vector machines, (Solla, S. A.; Leen, T. K.; Muller, K.-R., Advances in Neural Information Processing Systems 12 (2000), MIT Press: MIT Press Cambridge, MA), 652-658
[50] Wang, Z.; Bovik, A. C., Mean squared error: Love it or leave it? A new look at signal fidelity measures, IEEE Signal Process. Mag., 26, 98-117 (2009)
[51] Z. Wang, A.C. Bovik, B.L. Evans, Blind measurement of blocking artifacts in images, in: Proc. IEEE Int. Conf. Image Process. 2000, pp. 981-984.
[52] Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli, E. P., Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process, 13, 600-612 (2004)
[53] Wang, Z.; Sheikh, H. R.; Bovik, A. C., No-reference perceptual quality assessment of jpeg compressed images, (IEEE International Conference on Image Processing, vol. 1 (2002)), I-477-I-480, http://anchovy.ece.utexas.edu/ zwang/research/nr_jpeg_quality/index.html
[54] Wang, Z.; Simoncelli, E., Reduced-reference image quality assessment using a wavelet domain natural image statistic model, (Proceedings of SPIE Human Vision and Electronic Imaging, vol. 5666 (2005)), 149-159
[55] Z. Wang, E.P. Simoncelli, A.C. Bovik, Multiscale structural similarity image quality assessment, in: Proc. 37th Asilomar Conf. Signals Syst. Comput, 2003, pp. 1398-1402.
[56] Zhang, L.; Bovik, A. C.; Zhang, L., A feature enriched completely blind image quality evaluator, IEEE Trans. Image Process., 24, 2579-2591 (2015) · Zbl 1408.94807
[57] Zhang, L.; Mou, X.; Zhang, D., FSIM: A feature similarity index for image quality assessment, IEEE Trans. Image Process., 20, 2378-2386 (2011) · Zbl 1373.62333
[58] Zhao, Y.; Liu, Q., Generalized recurrent neural network for \(\varepsilon\) insensitive support vector regression, Math. Comput. Simulation, 86, 2-9 (2012) · Zbl 1478.68306
[59] X. Zhu, P. Milanfar, A no-reference sharpness metric sensitive to blur and noise,in: Quality Multim. Exp. Int. Workshop, San Diego, CA, 2009, pp. 64-69.
[60] Zhu, P.; Pan, F.; Chen, W.; Zhang, S., Use of support vector regression in structural optimization: Application to vehicle crashworthiness design, Math. Comput. Simulation, 86, 21-31 (2012) · Zbl 1533.76069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.