×

Dynamics of spike threshold in a two-compartment neuron with passive dendrite. (English) Zbl 1510.92058

Summary: Here a two-compartment model is used to investigate how spike threshold depends on the rate of membrane depolarization leading to the action potential, i.e., \(\mathrm dV_S/\mathrm dt\). The model is comprised of a soma and a passive dendrite, and incorporates a morphological parameter that describes the area proportion occupied by soma. The threshold potential of somatic chamber is determined within a range of \(\mathrm dV_S/\mathrm dt\) for different values of morphological parameter and internal coupling conductance. By analyzing the interactions of inward and outward membrane currents prior to spike initiation, the biophysical basis associated with each threshold dynamic has been identified. Based on the simulations, we conceptualize the threshold dynamics of neuron as the outward level of somatic net current at the perithreshold potentials. These results provide a detailed description about how the morphology and biophysics of neurons participate in their threshold dynamics, which could facilitate to interpret the modulatory mechanism of subthreshold electromagnetic fields as well as the biophysical basis of neural coding.

MSC:

92C20 Neural biology

Software:

XPPAUT
Full Text: DOI

References:

[1] Wagner, T.; Valero-Cabre, A.; Pascual-Leone, A., Noninvasive human brain stimulation, Annu Rev Biomed Eng, 9, 527-565 (2007)
[2] Zaehle, T.; Sandmann, P.; Thorne, J. D.; Jäncke, L.; Herrmann, C. S., Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence, BMC Neurosci, 12, 2 (2011)
[3] Zhang, Y.; Mao, R. R.; Chen, Z. F.; Tian, M.; Tong, D. L.; Gao, Z. R., Deep-brain magnetic stimulation promotes adult hippocampal neurogenesis and alleviates stress-related behaviors in mouse models for neuropsychiatric disorders, Mol. Brain, 7, 11 (2014)
[4] Peterchev, A. V.; Wagner, T. A.; Miranda, P. C.; Nitsche, M. A.; Paulus, W.; Lisanby, S. H., Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices, Brain Stimul, 5, 4, 435-453 (2012)
[5] Radman, T.; Su, Y.; An, J. H.; Parra, L. C.; Bikson, M., Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects, J Neurosci, 27, 11, 3030-3036 (2007)
[6] Bikson, M.; Inoue, M.; Akiyama, H.; Deans, J. K.; Fox, J. E.; Miyakawa, H., Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro, J Physiol, 557, Pt 1, 175-190 (2004)
[7] Yi, G.; Wang, J.; Wei, X.; Deng, B.; Tsang, K. M.; Chan, W. L., Effects of extremely low-frequency magnetic fields on the response of a conductance-based neuron model, Int J Neural Syst, 24, 1, Article 1450007 pp. (2014)
[8] Radman, T.; Ramos, R. L.; Brumberg, J. C.; Bikson, M., Role of cortical cell type and morphology in sub- and suprathreshold uniform electric field stimulation, Brain Stimul, 2, 4, 215-228 (2009)
[9] Schiff, S. J., Neural control engineering (2012), The MIT Press: The MIT Press Cambridge
[10] Svirskis, G.; Baginskas, A.; Hounsgaard, J.; Gutman, A., Electrotonic measurements by electric field-induced polarization in neurons: theory and experimental estimation, Biophys J, 73, 6, 3004-3015 (1997)
[11] Yi, G. S.; Wang, J.; Wei, X. L.; Tsang, K. M.; Chan, W. L.; Deng, B., Exploring how extracellular electric field modulates neuron activity through dynamical analysis of a two-compartment neuron model, J Comput Neurosci, 36, 3, 383-399 (2014)
[12] Koch, C., Biophysics of computation: information processing in single neurons (1999), Oxford University Press: Oxford University Press New York
[13] Izhikevich, E. M., Dynamical systems in neuroscience: the geometry of excitability and bursting (2007), The MIT Press: The MIT Press Cambridge
[14] Platkiewicz, J.; Brette, R., Impact of fast sodium channel inactivation on spike threshold dynamics and synaptic integration, PLoS Comput Biol, 7, 5, Article e1001129 pp. (2011)
[15] Azouz, R.; Gray, C. M., Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo, Proc Natl Acad Sci USA, 97, 14, 8110-8115 (2000)
[16] Azouz, R.; Gray, C. M., Adaptive coincidence detection and dynamic gain control in visual cortical neurons in vivo, Neuron, 37, 3, 513-523 (2003)
[17] Higgs, M. H.; Spain, W. J., Kv1 channels control spike threshold dynamics and spike timing in cortical pyramidal neurones, J Physiol, 589, Pt 21, 5125-5142 (2011)
[18] Wester, J. C.; Contreras, D., Biophysical mechanism of spike threshold dependence on the rate of rise of the membrane potential by sodium channel inactivation or subthreshold axonal potassium current, J Comput Neurosci, 35, 1, 1-17 (2013)
[19] Wilent, W. B.; Contreras, D., Stimulus-dependent changes in spike threshold enhance feature selectivity in rat barrel cortex neurons, J Neurosci, 25, 11, 2983-2991 (2005)
[20] Henze, D. A.; Buzsaki, G., Action potential threshold of hippocampal pyramidal cells in vivo is increased by recent spiking activity, Neuroscience, 105, 1, 121-130 (2001)
[21] Muñoz, F.; Fuentealba, P., Dynamics of action potential initiation in the GABAergic thalamic reticular nucleus in vivo, PLoS ONE, 7, 1, e30154 (2012)
[22] Fontaine, B.; Peña, J. L.; Brette, R., Spike-threshold adaptation predicted by membrane potential dynamics in vivo, PLoS Comput Biol, 10, 4, Article e1003560 pp. (2014)
[23] Escabí, M. A.; Nassiri, R.; Miller, L. M.; Schreiner, C. E.; Read, H. L., The contribution of spike threshold to acoustic feature selectivity, spike information content, and information throughput, J Neurosci, 25, 41, 9524-9534 (2005)
[24] Ferragamo, M. J.; Oertel, D., Octopus cells of the mammalian ventral cochlear nucleus sense the rate of depolarization, J Neurophysiol, 87, 5, 2262-2270 (2002)
[25] Kuba, H.; Ishii, T. M.; Ohmori, H., Axonal site of spike initiation enhances auditory coincidence detection, Nature, 444, 7122, 1069-1072 (2006)
[26] Hu, W.; Tian, C.; Li, T.; Yang, M.; Hou, H.; Shu, Y., Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation, Nat Neurosci, 12, 8, 996-1002 (2009)
[27] Bekkers, J. M.; Delaney, A. J., Modulation of excitability by alpha-dendrotoxin-sensitive potassium channels in neocortical pyramidal neurons, J Neurosci, 21, 17, 6553-6560 (2001)
[28] Guan, D.; Lee, J. C.; Higgs, M. H.; Spain, W. J.; Foehring, R. C., Functional roles of Kv1 channels in neocortical pyramidal neurons, J Neurophysiol, 97, 3, 1931-1940 (2007)
[29] Goldberg, E. M.; Clark, B. D.; Zagha, E.; Nahmani, M.; Erisir, A.; Rudy, B., K+ channels at the axon initial segment dampen near-threshold excitability of neocortical fast-spiking GABAergic interneurons, Neuron, 58, 3, 387-400 (2008)
[30] Dodson, P. D.; Barker, M. C.; Forsythe, I. D., Two heteromeric Kv1 potassium channels differentially regulate action potential firing, J Neurosci, 22, 16, 6953-6961 (2002)
[31] Mitry, J.; McCarthy, M.; Kopell, N.; Wechselberger, M., Excitable neurons, firing threshold manifolds and canards, J Math Neurosci, 3, 1, 12 (2013) · Zbl 1321.92046
[32] Desroches, M.; Krupa, M.; Rodrigues, S., Inflection, canards and excitability threshold in neuronal models, J Math Biol, 67, 4, 989-1017 (2013) · Zbl 1274.70045
[33] Tonnelier, A., Threshold curve for the excitability of bidimensional spiking neurons, Phys Rev E, 90, 2, Article 022701 pp. (2014)
[34] Izhikevich, E. M., Neural excitability, spiking and bursting, Int J Bifurc Chaos, 10, 6, 1171-1266 (2000) · Zbl 1090.92505
[35] FitzHugh, R., Threshold and plateaus in the Hodgkin-Huxley nerve equations, J Gen Physiol, 43, 867-896 (1960)
[36] Yi, G. S.; Wang, J.; Tsang, K. M.; Wei, X. L.; Deng, B., Biophysical insights into how spike threshold depends on the rate of membrane potential depolarization in type I and type II neurons, PLoS ONE, 10, 6, Article e0130250 pp. (2015)
[37] Yi, G. S.; Wang, J.; Tsang, K. M.; Wei, X. L.; Deng, B., Input-output relation and energy efficiency in the neuron with different spike threshold dynamics, Front Comput Neurosci, 9, 62 (2015)
[38] Yi, G. S.; Wang, J.; Wei, X. L.; Tsang, K. M.; Chan, W. L.; Deng, B., Neuronal spike initiation modulated by extracellular electric fields, PLoS One, 9, 5, e97481 (2014)
[39] Prescott, S. A.; De Koninck, Y.; Sejnowski, T. J., Biophysical basis for three distinct dynamical mechanisms of action potential initiation, PLoS Comput Biol, 4, 10, Article e1000198 pp. (2008)
[40] Yi, G.; Wang, J.; Tsang, K. M.; Wei, X.; Deng, B.; Han, C., Spike-frequency adaptation of a two-compartment neuron modulated by extracellular electric fields, Biol Cybern, 109, 3, 287-306 (2015) · Zbl 1344.92044
[41] Ermentrout, B., Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students (2002), SIAM: SIAM Philadelphia · Zbl 1003.68738
[42] Shishkova, M. A., Investigation of a system of differential equations with a small parameter in the highest derivatives, Dokl Akad Nauk SSSR, 209, 576-579 (1973)
[43] Bender, K. J.; Trussell, L. O., The physiology of the axon initial segment, Annu Rev Neurosci, 35, 249-265 (2012)
[44] Kole, M. H.; Stuart, G. J., Signal processing in the axon initial segment, Neuron, 73, 2, 235-247 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.