×

Synchronization of two identical and non-identical Rulkov models. (English) Zbl 1510.92051

Summary: In this paper, the synchronization of two chaotic Rulkov map-based neurons is taken into account. Firstly, based on the master stability function (MSF) analysis, the complete synchronization of two electrical coupled chaotic Rulkov neurons is investigated in detail. The two-dimensional parameter-space plot that displays directly the values of the MSF in different colors is numerically obtained. The numerical values of the MSF show that the two electrical coupled Rulkov neurons are likely to achieve the complete synchronization when each single neuron is in a silent state or a period-1 bursting state, while are unable to reach the complete synchronous state when each single neuron is in a chaotic bursting state or a spiking state. Secondly, Pearson’s correlation coefficient is employed to measure the synchronization degree, which demonstrates the nonexistence of the complete synchronization for non-identical electrical coupled Rulkov neurons. Importantly, the complete synchronization can not be reached with the increase of the electrical coupling strength, which is different from the continuous-time neuronal models. Finally, based on the active control method, a synchronization scheme is presented to study the complete synchronization for two Rulkov neurons no matter whether they are identical or not. The scheme is also applied to investigate the anticipated synchronization and the lag synchronization for any two Rulkov neurons. Numerical simulations verify the correctness of our analytical results and the effectiveness of our methods.

MSC:

92C20 Neural biology
92B20 Neural networks for/in biological studies, artificial life and related topics
Full Text: DOI

References:

[1] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys Rev Lett, 64, 821-825 (1990) · Zbl 0938.37019
[2] Kocarev, L.; Parlitz, U., Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems, Phys Rev Lett, 76, 1816-1819 (1996)
[3] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J., Phase synchronization of chaotic oscillators, Phys Rev Lett, 76, 1804-1807 (1996)
[4] Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D. L.; Zhou, C. S., The synchronization of chaotic systems, Phys Rep, 366, 1-101 (2002) · Zbl 0995.37022
[5] Belykh, I.; de Lange, E.; Hasler, M., Synchronization of bursting neurons: what matters in the network topology, Phys Rev Lett, 94, 188101 (2005)
[6] Belykh, I.; Hasler, M., Mesoscale and clusters of synchrony in networks of bursting neurons, Chaos, 21, 016106 (2011) · Zbl 1345.92035
[7] Juang, J.; Liang, Y. H., Cluster synchronization in networks of neurons with chemical synapses, Chaos, 24, 013110 (2014) · Zbl 1374.92011
[8] Wang, Q. Y.; Duan, Z. S.; Feng, Z. S.; Chen, G. R.; Lu, Q. S., Synchronization transition in gap-junction-coupled leech neurons, Phys A, 387, 4404-4410 (2008)
[9] Sivaprakasam, S.; Shahverdiev, E. M.; Spencer, P. S.; Shore, K. A., Experimental demonstration of anticipating synchronization in chaotic semiconductor lasers with optical feedback, Phys Rev Lett, 87, 154101 (2001)
[10] Yan, Z. Y., Q-S synchronization in 3D Hénon-like map and generalized Hénon map via a scalar controller, Phys Lett A, 342, 309-317 (2005) · Zbl 1222.37093
[11] Shi, X.; Lu, Q. S., Firing patterns and complete synchronization of coupled Hindmarsh-Rose neurons, Chin Phys Soc, 14, 77-85 (2005)
[12] Gu, H. G.; Chen, S. G.; Li, Y. Y., Complex transitions between spike, burst or chaos synchronization states in coupled neurons with coexisting burstiong patterns, Chin Phys B, 24, 05505 (2015)
[13] Singer, W.; Gray, C. M., Visual feature integration and the temporal correlation hypothesis, Annu Rev Neurosci, 18, 555-586 (1995)
[14] Llinás, R.; Ribary, U., Coherent 40-Hz oscillation characterized dream state in humans, Proc Natl Acad Sci USA, 90, 2078-2081 (1993)
[15] Hartline, D. K., Pattern generation in the lobster (panulirus) stomatogastric ganglion: pyloric network simulation, Biol Cybern, 33, 223-236 (1979)
[16] Kim, K. H.; Yoon, J.; Kim, J. H.; Jung, K. Y., Changes in gamma-band power and phase synchronization with the difficulty of a visual oddball task, Brain Res, 1236, 105-112 (2008)
[17] Choi, J. W.; Jung, K. Y.; Kim, C. H.; Kim, K. H., Changes in gamma- and theta-band phase synchronization patterns due to the difficulty of auditory oddball task, Neurosci Lett, 468, 156-160 (2010)
[18] Bartsch, R.; Kantelhardt, J. W.; Penzel, T.; Havlin, S., Experimental evidence for phase synchronization transitions in the human cardiorespiratory system, Phys Rev Lett, 98, 54102 (2007)
[19] Rulkov, N. F., Regularization of synchronized chaotic bursts, Phys Rev Lett, 86, 183-186 (2001)
[20] de Vries, G., Bursting as an emergent phenomenon in coupled chaotic maps, Phys Rev E, 64, 051914 (2001)
[21] Tanaka, G.; Ibarz, B.; Sanjuán, M. A.F.; Aihara, K., Synchronization and propagation of bursts in networks of coupled map neurons, Chaos, 16, 013113 (2006) · Zbl 1144.37410
[22] Cao, H. J.; Wu, Y. G., Bursting types and stable domains of rulkov neuron network with the mean field coupling, Int J Bifurc Chaos, 23, 1330041 (2013) · Zbl 1284.92020
[23] Cao, H. J.; Sanjuán, M. A.F., A mechanism for elliptic bursting and synchronization of bursts in a map-based neuron network, Cogn Process, 10, 23-31 (2009)
[24] Hu, D. P.; Cao, H. J., Stability and synchronization of coupled Rulkov map-based neurons with chemical synapses, Commun Nonlinear Sci Numer Simul, 35, 105-122 (2016) · Zbl 1510.92044
[25] Singer, W., Time as coding space in neocortical processing: a hypothesis (1994), Springer: Springer Berlin
[26] Eckhorn, R., Neural mechanisms of scene segmentation: recording from the visual cortex suggest basic circuits or linking fieldmodels, IEEE Trans Neural Netw, 10, 464-479 (1999)
[27] Uhlhaas, P. J.; Singer, W., Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology, Neuron, 52, 155-168 (2006)
[28] Rabinovich, M. I.; Varona, P.; Selverston, I.; Abarbanel, H. D., Dynamical principles in neuroscience, Rev Mod Phys, 78, 1231-1265 (2006)
[29] Ibarz, B.; Casado, J. M.; Sanjuán, M. A.F., Map-based models in neuronal dynamics, Phys Rep, 501, 1-74 (2011)
[30] Used, J.; Wagemakers, A.; Sanjuán, M. A.F., Regularization of map-based neuron models using phase control, Discontinuity Nonlinearity Complex, 1, 69-78 (2012)
[31] Nordenfelt, A.; Used, J.; Sanjuán, M. A.F., Bursting frequency versus phase synchronization in time delayed neuron networks, Phys Rev E, 87, 052903 (2013)
[32] Cao, H. J.; Ibarz, B., Hybrid discrete-time neural networks, Phil Trans R Soc A, 368, 5071-5086 (2010) · Zbl 1211.37104
[33] Ibarz, B.; Cao, H. J.; Sanjuán, M. A.F., Bursting regimes in map-based neuron models coupled through fast threshold modulation, Phys Rev E, 77, 051918 (2008)
[34] Wang, C. X.; Cao, H. J., Parameter space of the rulkov chaotic neuron model, Commun Nonlinear Sci Numer Simul, 19, 2060-2070 (2014) · Zbl 1457.92034
[35] Wang, C. X.; Cao, H. J., Stability and chaos of rulkov map-based neuron network with electrical synapse, Commun Nonlinear Sci Numer Simul, 20, 536-545 (2015) · Zbl 1333.92019
[36] Rulkov, N. F.; Timofeev, I.; Bazhenov, M., Oscillations in large-scale cortical networks: map-based model, J Comput Neurosci, 17, 203-223 (2004)
[37] Pikovsky, A. S.; Rosenblum, M. G.; Kurths, J., Synchronization: a universal concept in nonlinear sciences (2001), New York: Cambridge University Press · Zbl 0993.37002
[38] Pecora, L. M.; Carroll, T. L., Master stability functions for synchronized coupled systems, Phys Rev Lett, 80, 2109-2112 (1998)
[39] Rice, J. A., Mathematical statistics and data analysis (2007), California: Duxbury Press
[40] Yan, Z. Y., A nonlinear control scheme to anticipated and complete synchronization in discrete-time chaotic (hyperchaotic) systems, Phys Lett A, 343, 423-431 (2005) · Zbl 1194.37065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.