×

Mathematical modeling of heterogeneous metal foams for phase-change heat transfer enhancement of latent heat thermal energy storage units. (English) Zbl 1510.80016

MSC:

80A22 Stefan problems, phase changes, etc.
80M12 Finite volume methods applied to problems in thermodynamics and heat transfer
Full Text: DOI

References:

[1] Alva, G.; Lin, Y.; Fang, G., An overview of thermal energy storage systems, Energy, 144, 341-378 (2018)
[2] Huang, Y.; Pang, Z.; Kong, Y.; Watanabe, N., Assessment of the high-temperature aquifer thermal energy storage (HT-ATES) potential in naturally fractured geothermal reservoirs with a stochastic discrete fracture network model, J. Hydrol., 603, Article 127188 pp. (2021)
[3] Yang, X.; Wang, X.; Liu, Z.; Luo, X.; Yan, J., Effect of fin number on the melting phase change in a horizontal finned shell-and-tube thermal energy storage unit, Solar Energy Mater. Solar Cells, 236, Article 111527 pp. (2022)
[4] Li, Z. R.; Fu, G. T.; Fan, L. W., Synergistic effects of nano-enhanced phase change material (NePCM) and fin shape on heat storage performance of a finned shell-and-tube unit: an experimental study, J. Energy Storage, 45, Article 103772 pp. (2022)
[5] Pássaro, J.; Rebola, A.; Coelho, L.; Conde, J.; Evangelakis, G. A.; Prouskas, C.; Papageorgiou, D. G.; Zisopoulou, A.; Lagaris, I. E., Effect of fins and nanoparticles in the discharge performance of PCM thermal storage system with a multi pass finned tube heat exchange, Appl. Therm. Eng., 212, Article 118569 pp. (2022)
[6] Guo, J.; Liu, Z.; Yang, B.; Yang, X.; Yan, J., Melting assessment on the angled fin design for a novel latent heat thermal energy storage tube, Renew. Energy, 183, 406-422 (2022)
[7] Guo, J.; Wang, X.; Yang, B.; Yang, X.; Li, M. J., Thermal assessment on solid-liquid energy storage tube packed with non-uniform angled fins, Solar Energy Mater. Solar Cells, 236, Article 111526 pp. (2022)
[8] Zhang, Y.; Bozorg, M. V.; Torres, J. F.; Zhao, Y.; Wang, X., Dynamic melting of encapsulated PCM in various geometries driven by natural convection of surrounding air: a modelling-based parametric study, J. Energy Storage, 48, Article 103975 pp. (2022)
[9] Yazici, M. Y.; Saglam, M.; Aydin, O.; Avci, M., Thermal energy storage performance of PCM/graphite matrix composite in a tube-in-shell geometry, Therm. Sci. Eng. Prog., 23 (2021)
[10] Heyhat, M. M.; Mousavi, S.; Siavashi, M., Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle, J. Energy Storage, 28 (2020)
[11] Li, X.; Li, H.; Kong, X.; Yang, H., Characterization and experimental investigation of composite phase change materials based on aluminum nitride/expanded graphite, J. Energy Storage, 35, Article 102326 pp. (2021)
[12] Andreozzi, A.; Bianco, N.; Iasiello, M.; Naso, V., Thermo-fluid-dynamics of a ceramic foam solar receiver: a parametric analysis, Heat Transf. Eng., 41, 1085-1099 (2019)
[13] Bianco, N.; Iasiello, M.; Mauro, G. M.; Pagano, L., Multi-objective optimization of finned metal foam heat sinks: tradeoff between heat transfer and pressure drop, Appl. Therm. Eng., 182, Article 116058 pp. (2021)
[14] Yang, X.; Wei, P.; Wang, X.; He, Y. L., Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam, Appl. Energy, 268, Article 115019 pp. (2020)
[15] J, S. N.; DEDE, Ercan Mehmet, Thermal Management Systems Including Multiple Phase Changing Materials and Vehicles Including the Same (2018), Toyota Motor Engineering & Manufacturing North America, Inc: Toyota Motor Engineering & Manufacturing North America, Inc Plano, TXUnited States, (US)
[16] Nie, C.; Liu, J.; Deng, S., Effect of geometry modification on the thermal response of composite metal foam/phase change material for thermal energy storage, Int. J. Heat Mass Transf., 165, Article 120652 pp. (2021)
[17] Zheng, H.; Wang, C.; Liu, Q.; Tian, Z.; Fan, X., Thermal performance of copper foam/paraffin composite phase change material, Energy Convers. Manag., 157, 372-381 (2018)
[18] Razack, S. K.; Razack, K.; Ali, S., Thermal Management System and Device (2020), European Patent Office
[19] Guo, J.; Du, Z.; Liu, G.; Yang, X.; Li, M. J., Compression effect of metal foam on melting phase change in a shell-and-tube unit, Appl. Therm. Eng., 206, Article 118124 pp. (2022)
[20] Liu, G.; Xiao, T.; Guo, J.; Wei, P.; Yang, X.; Hooman, K., Melting and solidification of phase change materials in metal foam filled thermal energy storage tank: evaluation on gradient in pore structure, Appl. Therm. Eng., 212, Article 118564 pp. (2022)
[21] Deng, Z.; Liu, X.; Zhang, C.; Huang, Y.; Chen, Y., Melting behaviors of PCM in porous metal foam characterized by fractal geometry, Int. J. Heat Mass Transf., 113, 1031-1042 (2017)
[22] Xu, H.; Yao, F.; Zhang, C., Numerical study on melting heat transfer in fractal metal foam, Fractals, 27, Article 1950106 pp. (2019)
[23] Sabrina Ferfera, R.; Madani, B.; Serhane, R., Investigation of heat transfer improvement at idealized microcellular scale for metal foam incorporated with paraffin, Int. J. Therm. Sci., 156, Article 106444 pp. (2020)
[24] Tauseef ur, R.; Ali, H. M.; Janjua, M. M.; Sajjad, U.; Yan, W. M., A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams, Int. J. Heat Mass Transf., 135, 649-673 (2019)
[25] Filippeschi, S.; Mameli, M.; Di Marco, P., Experimental analysis of the melting process in a PCM/aluminum foam composite material in hypergravity conditions, Interfacial Phenom. Heat Transf., 6, 451-467 (2018)
[26] Hu, X.; Zhu, F.; Gong, X., Numerical investigation of the effects of heating and contact conditions on the thermal charging performance of composite phase change material, J. Energy Storage, 30, Article 101444 pp. (2020)
[27] Yang, X.; Guo, Z.; Liu, Y.; Jin, L.; He, Y. L., Effect of inclination on the thermal response of composite phase change materials for thermal energy storage, Appl. Energy, 238, 22-33 (2019)
[28] Prieto, C.; Lopez-Roman, A.; Martínez, N.; Morera, J. M.; Cabeza, L. F., Improvement of Phase Change Materials (PCM) used for solar process heat applications, Molecules, 26, Article 1260 pp. (2021)
[29] Du, S.; Xia, T.; He, Y. L.; Li, Z. Y.; Li, D.; Xie, X. Q., Experiment and optimization study on the radial graded porous volumetric solar receiver matching non-uniform solar flux distribution, Appl. Energy, 275, Article 115343 pp. (2020)
[30] Rezaei, E.; Barbato, M.; Gianella, S.; Ortona, A.; Haussener, S., Pressure drop and convective heat transfer in different SiSiC structures fabricated by indirect additive manufacturing, J. Heat Transf., 142, Article 032702 pp. (2020)
[31] Li, Z. B.; Li, X. Y.; Zheng, Y. X., Biaxial mechanical behavior of closed-cell aluminum foam under combined shear—compression loading, Trans. Nonferrous Metals Soc. China, 30, 41-50 (2020)
[32] Zhu, F.; Zhang, C.; Gong, X., Numerical analysis on the energy storage efficiency of phase change material embedded in finned metal foam with graded porosity, Appl. Therm. Eng., 123, 256-265 (2017)
[33] Joshi, V.; Rathod, M. K., Thermal performance augmentation of metal foam infused phase change material using a partial filling strategy: an evaluation for fill height ratio and porosity, Appl. Energy, 253, Article 113621 pp. (2019)
[34] Mahdi, J. M.; Nsofor, E. C., Multiple-segment metal foam application in the shell-and-tube PCM thermal energy storage system, J. Energy Storage, 20, 529-541 (2018)
[35] Mahdi, J. M.; Mohammed, H. I.; Hashim, E. T.; Talebizadehsardari, P.; Nsofor, E. C., Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system, Appl. Energy, 257, Article 113993 pp. (2020)
[36] Xu, Y.; Li, M. J.; Zheng, Z. J.; Xue, X. D., Melting performance enhancement of phase change material by a limited amount of metal foam: configurational optimization and economic assessment, Appl. Energy, 212, 868-880 (2018)
[37] Iasiello, M.; Bianco, N.; Chiu, W. K.S.; Naso, V., Thermal conduction in open-cell metal foams: anisotropy and representative volume element, Int. J. Therm. Sci., 137, 399-409 (2019)
[38] Iasiello, M.; Bianco, N.; Chiu, W. K.S.; Naso, V., Anisotropic convective heat transfer in open-cell metal foams: assessment and correlations, Int. J. Heat Mass Transf., 154, Article 119682 pp. (2020)
[39] Iasiello, M.; Mameli, M.; Filippeschi, S.; Bianco, N., Metal foam/PCM melting evolution analysis: orientation and morphology effects, Appl. Therm. Eng., 187, Article 116572 pp. (2021)
[40] Amani, Y.; Takahashi, A.; Chantrenne, P.; Maruyama, S.; Dancette, S.; Maire, E., Thermal conductivity of highly porous metal foams: experimental and image based finite element analysis, Int. J. Heat Mass Transf., 122, 1-10 (2018)
[41] Vijay, D.; Goetze, P.; Wulf, R.; Gross, U., Homogenized and pore-scale analyses of forced convection through open cell foams, Int. J. Heat Mass Transf., 123, 787-804 (2018)
[42] Yang, J.; Yang, L.; Xu, C.; Du, X., Numerical analysis on thermal behavior of solid-liquid phase change within copper foam with varying porosity, Int. J. Heat Mass Transf., 84, 1008-1018 (2015)
[43] Huang, X.; Sun, C.; Chen, Z.; Han, Y., Experimental and numerical studies on melting process of phase change materials (PCMs) embedded in open-cells metal foams, Int. J. Therm. Sci., 170, Article 107151 pp. (2021)
[44] Bamdezh, M. A.; Molaeimanesh, G. R.; Zanganeh, S., Role of foam anisotropy used in the phase-change composite material for the hybrid thermal management system of lithium-ion battery, J. Energy Storage, 32, Article 101778 pp. (2020)
[45] Yu, P.; Wang, Y.; Ji, R.; Wang, H.; Bai, J., Pore-scale numerical study of flow characteristics in anisotropic metal foam with actual skeleton structure, Int. Commun. Heat Mass Transf., 126, Article 105401 pp. (2021)
[46] Ren, Q.; Wang, Z.; Lai, T.; Zhang, J. F.; Qu, Z. G., Conjugate heat transfer in anisotropic woven metal fiber-phase change material composite, Appl. Therm. Eng., 189, Article 116618 pp. (2021)
[47] Iasiello, M.; Mameli, M.; Filippeschi, S.; Bianco, N., Metal foam/PCM melting evolution analysis: orientation and morphology effects, Appl. Therm. Eng., 187, Article 116572 pp. (2021)
[48] Zhang, P.; Meng, Z.; Zhu, H.; Wang, Y.; Peng, S., Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam, Appl. Energy, 185, 1971-1983 (2017)
[49] Nnanna, A. A.; Haji-Sheikh, A.; Harris, K. T., Experimental study of local thermal non-equilibrium phenomena during phase change in porous media, Int. J. Heat Mass Transf., 47, 4365-4375 (2004)
[50] Jiao, K.; Lu, L.; Wen, T.; Wang, Q., A modified mixture theory for one-dimensional melting of pure PCM and PCM/metal foam composite: numerical analysis and experiment validation, Int. J. Heat Mass Transf., 186, Article 122461 pp. (2022)
[51] Hu, X.; Gong, X., Pore-scale numerical simulation of the thermal performance for phase change material embedded in metal foam with cubic periodic cell structure, Appl. Therm. Eng., 151, 231-239 (2019)
[52] Mahdi, J. M.; Mohammed, H. I.; Hashim, E. T.; Talebizadehsardari, P.; Nsofor, E. C., Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system, Appl. Energy, 257, Article 113993 pp. (2020)
[53] Zadeh, S. M.H.; Mehryan, S.; Ghalambaz, M.; Ghodrat, M.; Young, J.; Chamkha, A., Hybrid thermal performance enhancement of a circular latent heat storage system by utilizing partially filled copper foam and Cu/GO nano-additives, Energy, 213, Article 118761 pp. (2020)
[54] Yang, X. H.; Bai, J. X.; Yan, H. B.; Kuang, J. J.; Lu, T. J.; Kim, T., An analytical unit cell model for the effective thermal conductivity of high porosity open-cell metal foams, Transp. Porous Media, 102, 403-426 (2014)
[55] Yang, X.; Kuang, J.; Lu, T.; Han, F.; Kim, T., A simplistic analytical unit cell based model for the effective thermal conductivity of high porosity open-cell metal foams, J. Phys. D Appl Phys., 46, Article 255302 pp. (2013)
[56] Bhattacharya, A.; Calmidi, V. V.; Mahajan, R. L., Thermophysical properties of high porosity metal foams, Int. J. Heat Mass Transf., 45, 1017-1031 (2002) · Zbl 1121.74443
[57] Xiao, X.; Zhang, P.; Li, M., Preparation and thermal characterization of paraffin/metal foam composite phase change material, Appl. Energy, 112, 1357-1366 (2013)
[58] Yang, X.; Lu, T. J.; Kim, T., An analytical model for permeability of isotropic porous media, Phys. Lett. A, 378, 2308-2311 (2014)
[59] Nield, D. A.; Bejan, A., Convection in Porous Media (2006), Springer · Zbl 1256.76004
[60] Zienkiewicz, O. C.; Taylor, R. L.; Nithiarasu, P., The Finite Element Method for Fluid Dynamics (2014), Butterworth-Heinemann: Butterworth-Heinemann Oxford · Zbl 1278.76006
[61] Söderlind, G.; Wang, L., Adaptive time-stepping and computational stability, J. Comput. Appl. Math., 185, 225-243 (2006) · Zbl 1077.65086
[62] Fahs, M.; Younes, A.; Makradi, A., A reference benchmark solution for free convection in a square cavity filled with a heterogeneous porous medium, Numer. Heat Transf. Part B Fundam., 67, 437-462 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.