×

Propagation of computer virus both across the Internet and external computers: a complex-network approach. (English) Zbl 1510.68009

Summary: Based on the assumption that external computers (particularly, infected external computers) are connected to the Internet, and by considering the influence of the Internet topology on computer virus spreading, this paper establishes a novel computer virus propagation model with a complex-network approach. This model possesses a unique (viral) equilibrium which is globally attractive. Some numerical simulations are also given to illustrate this result. Further study shows that the computers with higher node degrees are more susceptible to infection than those with lower node degrees. In this regard, some appropriate protective measures are suggested.

MSC:

68M11 Internet topics
05C82 Small world graphs, complex networks (graph-theoretic aspects)
68M25 Computer security
Full Text: DOI

References:

[1] Cohen, F., A short course of computer viruses, Comput Secur, 8, 149-160 (1990)
[2] Denning, P. J., Computers under attack (1990), Addison-Wesley: Addison-Wesley Reading, Mass, USA
[3] Szor, P., The art of computer virus research and defense (2005), Addison-Wesley Education Publishers Inc.
[4] Feng, L.; Liao, X.; Li, H.; Han, Q., Hopf bifurcation analysis of a delayed viral infection model in computer networks, Math Comput Model, 56, 7-8, 167-179 (2012) · Zbl 1255.34071
[5] Gan, C.; Yang, X.; Liu, W.; Zhu, Q.; Zhang, X., Propagation of computer virus under human intervention: a dynamical model, Discrete Dyn Nat Soc, 2012 (2012), Article ID 106950 · Zbl 1248.68074
[6] Gan, C.; Yang, X.; Zhu, Q.; Jin, J.; He, L., The spread of computer virus under the effect of external computers, Nonlinear Dyn, 73, 3, 1615-1620 (2013) · Zbl 1281.68054
[7] Han, X.; Tan, Q. L., Dynamical behavior of computer virus on internet, Appl Math Comput, 217, 6, 2520-2526 (2010) · Zbl 1209.68139
[8] Lahrouz, A.; Omari, L.; Kiouach, D.; Belmaâti, A., complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination, Appl Math Comput, 218, 6519-6525 (2012) · Zbl 1237.92054
[9] Mishra, B. K.; Jha, N., Fixed period of temporary immunity after run of anti-malicious software on computer nodes, Appl Math Comput, 190, 2, 1207-1212 (2007) · Zbl 1117.92052
[10] Mishra, B. K.; Jha, N., SEIQRS model for the transmission of malicious objects in computer network, Appl Math Model, 34, 3, 710-715 (2010) · Zbl 1185.68042
[11] Mishra, B. K.; Pandey, S. K., Fuzzy epidemic model for the transmission of worms in computer network, Nonlinear Anal: Real World Appl, 11, 5, 4335-4341 (2010) · Zbl 1203.94148
[12] Mishra, B. K.; Pandey, S. K., Dynamic model of worms with vertical transmission in computer network, Appl Math Comput, 217, 21, 8438-8446 (2011) · Zbl 1219.68080
[13] Mishra, B. K.; Saini, D. K., SEIRS epidemic model with delay for transmission of malicious objects in computer network, Appl Math Comput, 188, 2, 1476-1482 (2007) · Zbl 1118.68014
[14] Piqueira, J. R.C.; Araujo, V. O., A modified epidemiological model for computer viruses, Appl Math Comput, 213, 2, 355-360 (2009) · Zbl 1185.68133
[15] Ren, J.; Yang, X.; Yang, L. X.; Xu, Y.; Yang, F., A delayed computer virus propagation model and its dynamics, Chaos Solitons Fract, 45, 1, 74-79 (2012) · Zbl 1343.34186
[16] Ren, J.; Yang, X.; Zhu, Q.; Yang, L. X.; Zhang, C., A novel computer virus model and its dynamics, Nonlinear Anal: Real World Appl, 13, 1, 376-384 (2012) · Zbl 1238.34076
[17] Vargas-De-León, C., On the global stability of SIS, SIR and SIRS epidemic models with standard incidence, Chaos Solitons Fract, 44, 1106-1110 (2011) · Zbl 1355.92130
[18] Wang, F. W.; Zhang, Y. K.; Wang, C. G.; Ma, J. F.; Moon, S. J., Stability analysis of a SEIQV epidemic model for rapid spreading worms, Comput Secur, 29, 4, 410-418 (2010)
[19] Yuan, H.; Chen, G. Q., Network virus-epidemic model with the point-to-group information propagation, Appl Math Comput, 206, 1, 357-367 (2008) · Zbl 1162.68404
[20] Zhu, Q.; Yang, X.; Yang, L.-X.; Ren, J., Modeling and analysis of the spread of computer virus, Commun Nonlinear Sci Numer Simul, 17, 5117-5124 (2012) · Zbl 1261.93012
[21] Zhu, Q.; Yang, X.; Yang, L.-X.; Zhang, C., Optimal control of computer virus under a delayed model, Appl Math Comput, 218, 23, 11613-11619 (2012) · Zbl 1278.49045
[22] Zhang, C.; Zhao, Y.; Wu, Y., An impulse model for computer viruses, Discrete Dyn Nat Soc, 2012 (2012), Article ID 260962 · Zbl 1248.68079
[23] Zhang, C.; Zhao, Y.; Wu, Y.; Deng, S., A stochastic dynamic model of computer viruses, Discrete Dyn Nat Soc, 2012 (2012), Article ID 264874 · Zbl 1248.68080
[24] Yang, X.; Yang, L.-X., Towards the epidemiological modeling of computer viruses, Discrete Dyn Nat Soc, 2012 (2012), Article ID 259671 · Zbl 1253.68036
[25] Yang, L.-X.; Yang, X., The spread of computer viruses under the influence of removable storage devices, Appl Math Comput, 219, 8, 3914-3922 (2012) · Zbl 1311.68039
[26] Yang, L.-X.; Yang, X.; Wen, L.; Liu, J., Propagation behavior of virus codes in the situation that infected computers are connected to the Internet with positive probability, Discrete Dyn Nat Soc, 2012 (2012), Article ID 693695 · Zbl 1248.68077
[27] Yang, L.-X.; Yang, X.; Wen, L.; Liu, J., A novel computer virus propagation model and its dynamics, Int J Comput Math, 89, 17, 2307-2314 (2012) · Zbl 1255.68058
[28] Yang, L.-X.; Yang, X.; Zhu, Q.; Wen, L., A computer virus model with graded cure rates, Nonlinear Anal: Real World Appl, 14, 1, 414-422 (2013) · Zbl 1258.68020
[29] Yang, M.; Zhang, Z.; Li, Q.; Zhang, G., An SLBRS model with vertical transmission of computer virus over the internet, Discrete Dyn Nat Soc, 2012 (2012), Article ID 925648 · Zbl 1248.68078
[30] Faloutsos, M.; Faloutsos, P.; Faloutsos, C., On power-law relationships of the internet topology, ACM SIGCOMM Comput Commun Rev, 29, 4, 251-262 (1999)
[31] Albert, R.; Barabási, A.-L., Statistical mechanics of complex networks, Rev Mod Phys, 74, 1, 47-97 (2002) · Zbl 1205.82086
[32] Barthélemy, M.; Barrat, A.; Pastor-Satorras, R.; Vespignani, A., Velocity and hierarchical spread of epidemic outbreaks in scale-free networks, Phys Rev Lett, 92, 17 (2004), 4p [Article ID 178701]
[33] Billings, L.; Spears, W. M.; Schwartz, I. B., A unified prediction of computer virus spread in connected networks, Phys Lett A, 297, 3-4, 261-266 (2002) · Zbl 0995.68007
[34] Griffin, C.; Brooks, R., A note on the spread of worms in scale-free networks, IEEE Trans Syst Man Cybern B, 36, 1, 198-202 (2006)
[35] Chen, L. C.; Carley, K. M., The impact of countermeasure propagation on the prevalence of computer viruses, IEEE Trans Syst Man Cybern B, 34, 2, 823-833 (2004)
[36] Castellano, C.; Pastor-Satorras, R., Thresholds for epidemic spreading in networks, Phys Rev Lett, 105, 21 (2010), 4p [Article ID 218701]
[37] Dezsö, Z.; Barabási, A. L., Halting viruses in scale-free networks, Phys Rev E, 65, 5 (2002), 4p [Article ID 055103]
[38] Draief, M.; Ganesh, A.; Massoulié, L., Thresholds for virus spread on networks, Ann Appl Probab, 18, 2, 359-378 (2008) · Zbl 1137.60051
[39] Fu, X.; Small, M.; Walker, D. M.; Zhang, H., Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization, Phys Rev E, 77, 3 (2008), article 036113
[40] Karsai, M.; Kivelä, M.; Pan, R. K.; Kaski, K.; Kertész, J.; Barabási, A.-L.; Saramäki, J., Small but slow world: how network topology and burstiness slow down spreading, Phys Rev E, 83, 2 (2011), 4p [Article ID 025102]
[41] Lloyd, A. L.; May, R. M., How viruses spread among computers and people, Science, 292, 5520, 1316-1317 (2001)
[42] Moreno, Y.; Pastor-Satorras, R.; Vespignani, A., Epidemic outbreaks in complex heterogeneous networks, Eur Phys J B, 26, 4, 521-529 (2002)
[43] Boguñá, M.; Pastor-Satorras, R.; Vespignani, A., Absence of epidemic threshold in scale-free networks with degree correlations, Phys Rev Lett, 90, 2 (2003), 4p [Article ID 028701] · Zbl 1132.92338
[44] Pastor-Satorras, R.; Vespignani, A., Epidemic dynamics and endemic states in complex networks, Phys Rev E, 63, 6 (2001), 8p [Article ID 066117]
[45] Pastor-Satorras, R.; Vespignani, A., Epidemic spreading in scale-free networks, Phys Rev Lett, 86, 14, 3200-3203 (2001)
[46] Pastor-Satorras, R.; Vespignani, A., Immunization of complex networks, Phys Rev E, 65, 3 (2002), 8p [Article ID 036104]
[47] Wierman, J. C.; Marchette, D. J., Modeling computer virus prevalence with a susceptible-infectedsusceptible model with reintroduction, Comput Stat Data Anal, 45, 1, 3-23 (2004) · Zbl 1429.68037
[48] Yang, L.-X.; Yang, X.; Liu, J.; Zhu, Q.; Gan, C., Epidemics of computer viruses: A complex-network approach, Appl Math Comput, 219, 16, 8705-8717 (2013) · Zbl 1288.92025
[49] Zuo, Z.; Zhu, Q.; Zhou, M., On the time complexity of computer viruses, IEEE Trans Inf Theory, 51, 8, 2962-2966 (2005) · Zbl 1298.68118
[50] Yorke, J. A., Invariance for ordinary differential equations, Theory Comput Syst, 1, 4, 353-372 (1967) · Zbl 0155.14201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.