×

The radial basis function differential quadrature method with ghost points. (English) Zbl 1510.65310

Summary: We propose a simple approach to improve the accuracy of the Radial Basis Function Differential Quadrature (RBF-DQ) method for the solution of elliptic boundary value problems. While the traditional RBF-DQ method places the centers exclusively inside the domain, the proposed method expands the region for the centers allowing them to lie both inside and outside the computational domain. Furthermore, we seek an improvement to determine the shape parameter for the radial basis function by using the modified Franke’s formula to find an initial search interval for the leave-one-out cross-validation method, which is a widely used method for the determination of the shape parameter. Both 2D and 3D numerical examples are presented to demonstrate the effectiveness of the proposed method.

MSC:

65N99 Numerical methods for partial differential equations, boundary value problems
65D12 Numerical radial basis function approximation
Full Text: DOI

References:

[1] Bai, Y.; Wu, Y.; Xie, X., Uniform convergence analysis of a higher order hybrid stress quadrilateral finite element method for linear elasticity, Adv. Appl. Math. Mech., 8, 3, 399-425 (2016) · Zbl 1488.65605
[2] Bellman, R.; Kashef, B. G.; Casti, J., Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations, J. Comput. Phys., 10, 40-52 (1972) · Zbl 0247.65061
[3] Chen, C. S.; Fan, C. M.; Wen, P. H., The method of particular solutions for solving certain partial differential equations, Numer. Methods Partial Differential Equations, 28, 506-522 (2012) · Zbl 1242.65267
[4] Fairweather, G.; Karageorghis, A., The method of fundamental solutions for elliptic boundary value problems, Adv. Comput. Math., 9, 69-95 (1998) · Zbl 0922.65074
[5] Fasshauer, G. E., Solving partial differential equations by collocation with radial basis functions, (Méhauté, A. Le; Rabut, C.; Schumaker, L. L., Surface Fitting and Multiresolution Methods (1997), Vanderbilt University Press: Vanderbilt University Press Nashville, TN), 131-138 · Zbl 0938.65140
[6] Fasshauer, G. E.; Zhang, J. G., On choosing optimal shape parameters for RBF approximation, Numer. Algorithms, 45, 345-368 (2007) · Zbl 1127.65009
[7] Franke, R., Scattered data interpolation: tests of some methods, Math. Comp., 38, 181-200 (1982) · Zbl 0476.65005
[8] Ge, Z.; Feng, M.; He, Y., Stabilized multiscale finite element method for the stationary Navier-Stokes equations, J. Math. Anal. Appl., 354, 2, 708-717 (2009) · Zbl 1161.76027
[9] Golberg, M. A.; Chen, C. S., The method of fundamental solutions for potential, Helmholtz and diffusion problems, (Golberg, M. A., Boundary Integral Methods: Numerical and Mathematical Aspects. Boundary Integral Methods: Numerical and Mathematical Aspects, Comput. Eng., vol. 1 (1999), WIT Press/Comput. Mech. Publ.: WIT Press/Comput. Mech. Publ. Boston, MA), 103-176 · Zbl 0945.65130
[10] Jiang, Y.; Xu, X., A monotone finite volume method for time fractional Fokker-Planck equations, Sci. China Math., 62, 4, 783-794 (2019) · Zbl 1426.65139
[11] Kansa, E. J., Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics. II. Solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl., 19, 147-161 (1990) · Zbl 0850.76048
[12] Korkmaz, A.; Dağ, I., Solitary wave simulations of complex modified Korteweg-de Vries equation using differential quadrature method, Comput. Phys. Comm., 180, 1516-1523 (2009) · Zbl 07872394
[13] Krowiak, A., Hermite type radial basis function-based differential quadrature method for higher order equations, Appl. Math. Model., 40, 2421-2430 (2016) · Zbl 1452.65391
[14] Kuo, L. H., On the Selection of a Good Shape Parameter for RBF Approximation and its Applications for Solving PDEs (2015), University of Southern Mississippi, (Ph.D. Dissertation)
[15] Larsson, E.; Fornberg, B., A numerical study of some radial basis function based solution for elliptic PDEs, Comput. Math. Appl., 46, 891-902 (2003) · Zbl 1049.65136
[16] Li, J.; Liu, F.; Feng, L.; Turner, I., A novel finite volume method for the Riesz space distributed-order diffusion equation, Comput. Math. Appl., 74, 772-783 (2017) · Zbl 1384.65059
[17] Lin, J.; Xu, Y.; Zhang, Y., Simulation of linear and nonlinear advection-diffusion-reaction problems by a novel localized scheme, Appl. Math. Lett. (2020) · Zbl 1437.65211
[18] Liu, S.; Chen, Y.; Huang, Y.; Zhou, J., An efficient two grid method for miscible displacement problem approximated by mixed finite element methods, Comput. Math. Appl., 77, 3, 752-764 (2019) · Zbl 1442.65269
[19] Ngo-Cong, D.; Tran, C.-D.; Mai-Duy, N.; Tran-Cong, T., Incompressible smoothed particle hydrodynamics-moving IRBFN method for viscous flow problems, Eng. Anal. Bound. Elem., 59, 172-186 (2015) · Zbl 1403.76168
[20] Rippa, S., An algorithm for selecting a good value for the parameter \(c\) in radial basis function interpolation, Adv. Comput. Math., 11, 193-210 (1999) · Zbl 0943.65017
[21] Shen, L. H.; Tseng, K. H.; Young, D. L., Evaluation of multi-order derivatives by local radial basis function differential quadrature method, J. Mech., 29, 67-78 (2013)
[22] Shu, C.; Wu, Y. L., Integrated radial basis functions-based differential quadrature method and its performance, Internat. J. Numer. Methods Fluids, 53, 969-984 (2007) · Zbl 1109.65025
[23] Watson, D.; Karageorghis, A.; Chen, C. S., The radial basis function-differential quadrature method for elliptic problems in annular domains, J. Comput. Appl. Math., 363, 53-76 (2019) · Zbl 1418.65188
[24] Wu, Hui-Yuan; Duan, Yong, Multi-quadric quasi-interpolation method coupled with FDM for the Degasperis-Procesi equation, Appl. Math. Comput., 274, 83-92 (2016) · Zbl 1410.65331
[25] Wu, Y. L.; Shu, C., Development of RBF-DQ method for derivative approximation and its application to simulate natural convection in concentric annuli, Comput. Mech., 29, 477-485 (2002) · Zbl 1146.76635
[26] Zheng, Hui; Yang, Z.; Zhang, C.; Tyrer, M., A local radial basis function collocation method for band structure computation of phononic crystals with scatterers of arbitrary geometry, Appl. Math. Model., 60, 447-459 (2018) · Zbl 1480.74169
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.