×

An Atiyah-Bott-Lefschetz theorem for relative elliptic complexes. (English) Zbl 1510.58009

In this article, the authors prove a relative variant of the Atiyah-Bott-Lefschetz fixed point theorem.
More precisely (but for technical details cf. Section 2 in the paper), let \((M,X)\) be a pair consisting of a smooth closed manifold \(M\) and a smooth closed submanifold \(X\subset M\). On the one hand one can introduce the concept of a relative elliptic complex over \((M,X)\) in the way analogous to the absolute case. Beyond the relative elliptic operators in this complex, one can talk about relative geometric operators too, akin to the absolute case. We demand that the elliptic operators and the geometric operators in this complex be compatible with each other in the usual sense i.e. they should satisfy the chain property. On the other hand we assume that \((M,X)\) carries a relative action of a group \(G\) as well i.e. every \(g\in G\) gives rise to a diffeomorphism \(g:M\rightarrow M\) such that \(g(X)=X\); a point \(x\in M\) is called a fixed point of \(g\) if \(g(x)=x\) and this fixed point is called non-degenerate if the spectrum of the derivative \(g_*: T_xM\rightarrow T_{g(x)}M=T_xM\) does not contain the unit \(1\in\mathrm{C}\). Note that non-degenerate fixed points are isolated hence by compactness of \(M\) there exists only finitely many of them. The main result of the paper is Theorem 1 which states that in this relative situation an Atiyah-Bott-Lefschetz-like fixed point formula can be obtained such that it contains two summations over the fixed points of \(g\): one term is a usual summation over the fixed points of \(g\) over \(M\) and the other term is a usual summation over the fixed points of \(g\) over \(X\) (see Theorem 1 for the precise formulation). The theorem is then applied to obtain trace formulas for relative cone complexes and for the relative de Rham complex (see Section 3 in the paper).

MSC:

58J10 Differential complexes
58A12 de Rham theory in global analysis
58C30 Fixed-point theorems on manifolds
Full Text: DOI

References:

[1] Lefschetz, S., Intersections and transformations of complexes and manifolds, Trans. Am. Math. Soc., 28, 1-49 (1926) · JFM 52.0572.02 · doi:10.1090/S0002-9947-1926-1501331-3
[2] Atiyah, M. F.; Bott, R., A Lefschetz fixed point formula for elliptic complexes. I, Ann. Math., 86, 374-407 (1967) · Zbl 0161.43201 · doi:10.2307/1970694
[3] Atiyah, M. F.; Bott, R., A Lefschetz fixed point formula for elliptic complexes. II. Applications, Ann. Math., 87, 451-491 (1968) · Zbl 0167.21703 · doi:10.2307/1970721
[4] Toledo, D., On the Atiyah-Bott formula for isolated fixed points, J. Differ. Geom., 8, 401-436 (1973) · Zbl 0293.58014 · doi:10.4310/jdg/1214431800
[5] Toledo, D.; Tong, Y. L., Duality and intersection theory in complex manifolds II, the holomorphic Lefschetz formula, Ann. Math., 108, 519-538 (1975) · Zbl 0413.32006 · doi:10.2307/1971186
[6] Inoue, H., A proof of the holomorphic Lefschetz formula for higher dimensional fixed point sets by the heat equation method, J. Fac. Sci. Univ. Tokyo, 29, 267-285 (1982) · Zbl 0538.58034
[7] Gilkey, P. B., Lefschetz fixed point formulas and the heat equation, Commun. Pure Appl. Math., 48, 91-147 (1979) · Zbl 0405.58044
[8] Efremov, A. V., “The Atyah-Bott-Lefschetz formula for Hilbert bundles,” Vestn. Mosk. Univ, Ser.: Mat. Mekh., 4, 92-95 (1968)
[9] Donnelly, H.; Fefferman, C., Fixed point formula for the Bergman kernel, Am. J. Math., 108, 1241-1258 (1986) · Zbl 0603.32018 · doi:10.2307/2374604
[10] Sternin, B. Yu.; Shatalov, V. E., Lefschetz fixed point theorem for quantized symplectic transformations, Funct. Anal. Appl., 32, 247-257 (1998) · Zbl 0948.58018 · doi:10.1007/BF02463207
[11] Nazaikinskii, V. E., Semiclassical Lefschetz formulas on smooth and singular manifolds, Russ. J. Math. Phys., 6, 202-213 (1999) · Zbl 1059.58503
[12] Brenner, A. V.; Shubin, M. A., The Atiyah-Bott-Lefschetz formula for elliptic complexes on a manifold with boundary, J. Math. Sci. (N. Y.), 64, 1069-1111 (1993) · Zbl 0784.58056 · doi:10.1007/BF01097408
[13] Nazaikinskii, V. E.; Schulze, B.-W.; Sternin, B. Yu.; Shatalov, V. E., The Atiyah-Bott-Lefschetz theorem for manifolds with conical singularities, Ann. Global Anal. Geom., 17, 409-439 (1999) · Zbl 0981.58016 · doi:10.1023/A:1006509003512
[14] Nazaikinskii, V. E.; Sternin, B. Yu., \(C^*\) Algebras and Elliptic Theory, Trends in Mathematics (2006), Basel: Birkhäuser, Basel · Zbl 1118.58010
[15] Sternin, B. Yu., Elliptic and parabolic problems on manifolds with boundary consisting of components of different dimension, Trans. Moscow Math. Soc., 15, 387-429 (1966) · Zbl 0162.15601
[16] Sternin, B. Yu., Relative elliptic theory and the Sobolev problem, Sov. Math. Dokl., 17, 1306-1309 (1976) · Zbl 0365.58017
[17] Novikov, S. P.; Sternin, B. Yu., Traces of elliptic operators on submanifolds and \(K\), Sov. Math. Dokl., 7, 1373-1376 (1966) · Zbl 0174.41302
[18] Novikov, S. P.; Sternin, B. Yu., Elliptic operators and submanifolds, Sov. Math. Dokl., 7, 1508-1512 (1966) · Zbl 0174.41303
[19] Sternin, B. Yu.; Shatalov, V. E., Relative elliptic theory and the Sobolev problems, Sb.: Math., 187, 1691-1720 (1996) · Zbl 0882.58053
[20] V. Nazaikinskii and B. Sternin, ‘‘Relative elliptic theory,’’ in Aspects of Boundary Problems in Analysis and Geometry, Ed. by J. Gil, Th. Krainer, and I. Witt, Vol. 151 of Operator Theory: Advances and Applications (Birkhäuser, Basel, 2004), pp. 495-560. · Zbl 1090.58016
[21] C. Bohlen and R. Schulz, ‘‘Quantization on manifolds with an embedded submanifold,’’ arXiv: 1710.02294 (2017).
[22] Izvarina, N. R.; Savin, A. Yu., Complexes in relative elliptic theory, Euras. Math. J., 11, 45-57 (2020) · Zbl 1474.58008 · doi:10.32523/2077-9879-2020-11-4-45-57
[23] Schulze, B.-W.; Tarkhanov, N. N., A Lefschetz fixed point formula in the relative elliptic theory, Commun. Appl. Anal., 4, 99-119 (2000) · Zbl 1089.58500
[24] B. V. Fedosov, ‘‘Index theorems,’’ in Partial Differential Equations, VIII, Vol. 65 of Encyclopaedia of Mathematical Sciences (Springer, Berlin, 1996), pp. 155-251. · Zbl 0884.58087
[25] Nazaikinskii, V. E.; Sternin, B. Yu., On the Green operator in relative elliptic theory, Dokl. Math., 68, 57-60 (2003) · Zbl 1125.58302
[26] Sternin, B. Yu.; Shatalov, V. E., Extension of the algebra of pseudodifferential operators, and some nonlocal elliptic problems, Sb. Math., 81, 363-396 (1995) · Zbl 0840.35132 · doi:10.1070/SM1995v081n02ABEH003543
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.