×

Vector solitons in coupled nonlinear Schrödinger equations with spatial stimulated scattering and inhomogeneous dispersion. (English) Zbl 1510.35299

Summary: The dynamics of two-component solitons is studied, analytically and numerically, in the framework of a system of coupled extended nonlinear Schrödinger equations, which incorporate the cross-phase modulation, pseudo-stimulated-Raman-scattering (pseudo-SRS), cross-pseudo-SRS, and spatially inhomogeneous second-order dispersion (SOD). The system models co-propagation of electromagnetic waves with orthogonal polarizations in plasmas. It is shown that the soliton’s wavenumber downshift, caused by pseudo-SRS, may be compensated by an upshift, induced by the inhomogeneous SOD, to produce stable stationary two-component solitons. The corresponding approximate analytical solutions for stable solitons are found. Analytical results are well confirmed by their numerical counterparts. Further, the evolution of inputs composed of spatially even and odd components is investigated by means of systematic simulations, which reveal three different outcomes: formation of a breather which keeps opposite parities of the components; splitting into a pair of separating vector solitons; and spreading of the weak odd component into a small-amplitude pedestal with an embedded dark soliton.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35C08 Soliton solutions
37K50 Bifurcation problems for infinite-dimensional Hamiltonian and Lagrangian systems

References:

[1] Agrawal, G. P., Nonlinear fiber optics (2001), Academic Press: Academic Press San Diego
[2] Yang, J., Solitons in field theory and nonlinear analysis (2001), Springer: Springer New York · Zbl 0982.35003
[3] Kivshar, Y. S.; Agrawal, G. P., Optical solitons: from fibers to photonic crystals (2003), Academic Press: Academic Press San Diego
[4] Dickey, L. A., Soliton equation and hamiltonian systems (2005), World Scientific: World Scientific New York
[5] Zakharov, V. E.; Shabat, A. B., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov Phys JETP, 34, 62-69 (1972)
[6] Hasegawa, A.; Tappert, F., Transmission of stationary nonlinear optical physics in dispersive dielectric fibers I: anomalous dispersion, Appl Phys Lett, 23, 142-144 (1973)
[7] Manakov, S. V., On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Sov Phys JETP, 38, 248-253 (1974)
[8] Fordy, A. P.; Kullish, P. P., Nonlinear Schrödinger equations and simple Lie algebras, Commun Math Phys, 89, 427-443 (1983) · Zbl 0563.35062
[9] Menyuk, C. R., Stability of vector solitons in optical fibers, Opt Lett, 12, 614-616 (1987), Stability of solitons in birefringent optical fibers. II. Arbitrary amplitudes. JOSA B 1988; 5: 392-402
[10] Lazarides, N.; Tsironis, G. P., Coupled nonlinear Schro¨inger eld equations for electromagnetic wave propa-gation in nonlinear left-handed materials, Phys Rev E, 71, Article 036614 pp. (2005)
[11] Yang, J., Interactions of vector solitons, Phys Rev E, 64, Article 026607 pp. (2001)
[12] Ablowitz, M. J.; Prinari, B.; Trubatch, A. D., Soliton interactions in the vector NLS equation, Inverse Prob, 20, 1217-1237 (2004) · Zbl 1074.35082
[13] Vahala, G.; Vahala, L.; Yepes, J., Inelastic vector soliton collisions: a quantum lattice gas representation, Phil Trans R Soc L A, 362, 1677-1690 (2004) · Zbl 1205.82044
[14] Oliviera, J. R.; Moura, M. A., Analytical solution for the modified nonlinear Schrödinger equation describing optical shock formation, Phys Rev E, 57, 4751-4755 (1998)
[15] Mitschke, F. M.; Mollenauer, L. F., Discovery of the soliton self-frequency shift, Opt Lett, 11, 659-661 (1986)
[16] Gordon, J. P., Theory of the soliton self-frequency shift, Opt Lett, 11, 662-664 (1986)
[17] Kodama, Y. J., Optical solitons in a monomode fiber, Stat Phys, 39, 597-614 (1985)
[18] Kodama, Y. J.; Hasegawa, A. A., Nonlinear pulse propagation in a monomode dielectric guide, IEEE J Quantum Electron, 23, 510-524 (1987)
[19] Zaspel, C. E., Optical solitary wave and shock solutions of the higher order nonlinear Schrödinger equation, Phys Rev Lett, 82, 723-726 (1999)
[20] Hong, B.; Lu, D., New Jacobi functions solitons for the higher-order nonlinear Schrödinger equation, Inter J Nonlinear Sci, 7, 360-367 (2009) · Zbl 1177.35220
[21] Karpman, V. I., The extended third-order nonlinear Schrödinger equation and Galilean transformation, Eur Phys J B, 39, 341-350 (2004)
[22] Gromov, E. M.; Talanov, V. I., Nonlinear dynamics of short wave trains in dispersive media, JETP, 83, 73-79 (1996)
[23] Gromov, E. M.; Talanov, V. I., Short optical solitons in fibers, Chaos, 10, 551-558 (2000)
[24] Gromov, E. M.; Piskunova, L. V.; Tyutin, V. V., Dynamics of wave packets in the frame of third-order non-linear Schrödinger equation, Phys Lett A, 256, 153-158 (1999)
[25] Obregon, M. A.; YuA., Stepanyants, Oblique magneto-acoustic solitons in a rotating plasma, Phys Lett A, 249, 315-323 (1998)
[26] Scalora, M., Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials, Phys Rev Lett, 95, Article 013902 pp. (2005)
[27] Wen, S. C., Modulation instability in nonlinear negative-index material, Phys Rev E, 73, Article 036617 pp. (2006)
[28] Marklund, M.; Shukla, P. K.; Stenflo, L., Ultrashort solitons and kinetic effects in nonlinear metamaterials, Phys Rev E, 73, Article 037601 pp. (2006)
[29] Tsitsas, N., Higher-order effects and ultrashort solitons in left-handed metamaterials, Phys Rev E, 79, Article 037601 pp. (2009)
[30] Kivshar, Y. S., Dark-soliton dynamics and shock waves induced by the stimulated Raman effect in optical fibers, Phys Rev A, 42, 1757-1761 (1990)
[31] Kivshar, Y. S.; Malomed, B. A., Raman-induced optical shocks in nonlinear fibers, Opt Lett, 18, 485-487 (1993)
[32] Malomed, B. A.; Tasgal, R. S., Matching intrapulse self-frequency shift to sliding-frequency filters for transmission of narrow solitons, JOSA B, 15, 162-170 (1998)
[33] Biancalama, F.; Skrybin, D. V.; Yulin, A. V., Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers, Phys Rev E, 70, 01 (2004)
[34] Essiambre, R.-J.; Agrawal, G. P., Timing jitter of ultra short solitons in high-speed communication systems. I. General formulation and application to dispersion-decreasing fibers, JOSA B, 14, 314-322 (1997)
[35] Essiambre, R.-J.; Agrawal, G. P., Timing jitter of ultra short solitons in high-speed communication systems. II. Control of jitter by periodic optical phase conjugation, JOSA B, 14, 323-330 (1997)
[36] Andrianov, A.; Muraviev, S.; Kim, A.; Sysoliatin, A., DDF-based all-fiber optical source of femtosecond pulses smoothly tuned in the telecommunication Range, Laser Phys, 17, 1296-1302 (2007)
[37] Chernikov, S.; Dianov, E.; Richardson, D.; Payne, D., Soliton pulse compression in dispersion-decreasing fiber, Opt Lett, 18, 476-478 (1993)
[38] Gromov, E. M.; Malomed, B. A., Soliton dynamics in an extended nonlinear Schrödinger equation with a spatial counterpart of the stimulated Raman scattering, J Plasma Phys, 79, 1057-1062 (2013)
[39] Gromov, E. M.; Malomed, B. A., Damped solitons in an extended nonlinear Schrödinger equation with a spatial stimulated Raman scattering and decreasing dispersion, Opt Comm, 320, 88-93 (2014)
[40] Zakharov, V. E., Hamiltonian formalism for hydrodynamic plasma model, Sov Phys JETP, 33, 927-932 (1971)
[41] Aseeva, N. V.; Gromov, E. M.; Onosova, I. V.; Tyutin, V. V., Soliton in a higher-order nonlinear Schrödinger equation with spatial stimulated scattering and spatially inhomogeneous second-order dispersion, JETP Lett, 103, 736-741 (2016)
[42] Kim, J., A coupled higher-order nonlinear Schrodinger equation including higher-order bright and dark solitons, ETRI J, 23, 9-15 (2001)
[43] Lu, F.; Lin, W. H.; Knox, W. H.; Agrawal, G. P., Vector soliton fission, Phys Rev Lett, 93, Article 183901 pp. (2004)
[44] Gromov, E. M.; Piskunova, L. V.; Tyutin, V. V.; Vorontzov, D. E., Short vector solitons, Phys Lett A, 287, 233-239 (2001) · Zbl 0971.35069
[45] Wen, S. C., Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials, Phys Rev A, 75, Article 033815 pp. (2007)
[46] Aseeva, N. V.; Gromov, E. M.; Tyutin, V. V., Phase interaction of short vector solitons, Phys Lett A, 376, 718-722 (2012) · Zbl 1255.35198
[47] Menyuk, C. R., Pulse-propagation in an elliptically birefringent Kerr medium, IEEE J Quantum Electron, 25, 2674-2682 (1989)
[48] Manakov, S. V., On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Sov Phys-JETP, 38, 248-253 (1974)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.