×

On reaction-diffusion models with memory and mean curvature-type diffusion. (English) Zbl 1510.35079

Summary: We propose and study a reaction-diffusion model with memory, where the linear diffusion operator is replaced by the mean curvature operator both in Euclidean and Lorentz-Minkowski spaces and the memory kernel is assumed to be of Jeffreys type. Regarding the reaction term, we consider a balanced bistable function \(f = - F^\prime\), with \(F\) a generic double well potential with wells of equal depth. In particular, we assume that the potential \(F\) has two global minima at \(\pm 1\) and that \(F(u) \sim | 1 \pm u |^{2 + \theta}\), for some \(\theta > - 1\), when \(u \approx \pm 1\), and we consider the corresponding equation in a bounded interval with homogeneous Neumann boundary conditions. We prove that if \(\theta \in(- 1, 0)\), then there exist special steady states, named compactons, with a transition layer structure. In contrast, if \(\theta \geq 0\) the interface layers are not stationary and two different phenomena emerge: for \(\theta = 0\) solutions exhibit a metastable behavior and maintain an unstable structure for an exponentially long time, while if \(\theta > 0\) the exponentially slow motion is replaced by an algebraic one.

MSC:

35B45 A priori estimates in context of PDEs
35L20 Initial-boundary value problems for second-order hyperbolic equations
35L71 Second-order semilinear hyperbolic equations
Full Text: DOI

References:

[1] Allen, S.; Cahn, J., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27, 1085-1095 (1979)
[2] Bartnik, R.; Simon, L., Spacelike hypersurfaces with prescribed boundary values and mean curvature, Commun. Math. Phys., 87, 131-152 (1982/1983) · Zbl 0512.53055
[3] Bertsch, M.; Dal Passo, R., Hyperbolic phenomena in a strongly degenerate parabolic equation, Arch. Ration. Mech. Anal., 117, 349-387 (1992) · Zbl 0785.35056
[4] Bethuel, F.; Smets, D., Slow motion for equal depth multiple-well gradient systems: the degenerate case, Discrete Contin. Dyn. Syst., 33, 67-87 (2013) · Zbl 1263.35018
[5] Bonheure, D.; Coelho, I.; Nys, M., Heteroclinic solutions of singular quasilinear bistable equations, Nonlinear Differ. Equ. Appl., 24, 35 (2017) · Zbl 1375.34071
[6] Bonheure, D.; d’Avenia, P.; Pomponio, A., On the electrostatic Born-Infeld equation with extended charges, Commun. Math. Phys., 346, 877-906 (2016) · Zbl 1365.35170
[7] Bronsard, L.; Kohn, R., On the slowness of phase boundary motion in one space dimension, Commun. Pure Appl. Math., 43, 983-997 (1990) · Zbl 0761.35044
[8] Carr, J.; Pego, R. L., Metastable patterns in solutions of \(u_t = \varepsilon^2 u_{x x} - f(u)\), Commun. Pure Appl. Math., 42, 523-576 (1989) · Zbl 0685.35054
[9] Cattaneo, C., Sulla conduzione del calore, Atti Semin. Mat. Fis. Univ. Modena, 3, 83-101 (1948) · Zbl 0035.26203
[10] Duffy, B. R.; Freitas, P.; Grinfeld, M., Memory driven instability in a diffusion process, SIAM J. Math. Anal., 33, 1090-1106 (2002) · Zbl 1009.35012
[11] Folino, R., Exponentially slow motion for a one-dimensional Allen-Cahn equation with memory, Rend. Mat. Appl. (7), 42, 253-270 (2021) · Zbl 1465.35056
[12] Folino, R.; Lattanzio, C.; Mascia, C., Metastable dynamics for hyperbolic variations of the Allen-Cahn equation, Commun. Math. Sci., 15, 2055-2085 (2017) · Zbl 1406.35198
[13] Folino, R.; Plaza, R. G.; Strani, M., Metastable patterns for a reaction-diffusion model with mean curvature-type diffusion, J. Math. Anal. Appl., 493, Article 124455 pp. (2021) · Zbl 1462.35183
[14] Folino, R.; Plaza, R. G.; Strani, M., Long time dynamics of solutions to p-Laplacian diffusion problems with bistable reaction terms, Discrete Contin. Dyn. Syst., 41, 3211-3240 (2021) · Zbl 1465.35030
[15] Fusco, G.; Hale, J. K., Slow-motion manifolds, dormant instability, and singular perturbations, J. Dyn. Differ. Equ., 1, 75-94 (1989) · Zbl 0684.34055
[16] Grant, C. P., Slow motion in one-dimensional Cahn-Morral systems, SIAM J. Math. Anal., 26, 21-34 (1995) · Zbl 0813.35042
[17] Grasselli, M.; Pata, V., A reaction-diffusion equation with memory, Discrete Contin. Dyn. Syst., 15, 1079-1088 (2006) · Zbl 1114.35030
[18] Kurganov, A.; Rosenau, P., Effects of a saturating dissipation in Burgers-type equations, Commun. Pure Appl. Math., 50, 753-771 (1997) · Zbl 0888.35097
[19] Kurganov, A.; Rosenau, P., On reaction processes with saturating diffusion, Nonlinearity, 19, 171-193 (2006) · Zbl 1094.35063
[20] Mascia, C., Stability analysis for linear heat conduction with memory kernels described by Gamma functions, Discrete Contin. Dyn. Syst., 35, 3569-3584 (2015) · Zbl 1307.74025
[21] Olmstead, W. E.; Davis, S. H.; Rosenblat, S.; Kath, W. L., Bifurcation with memory, SIAM J. Appl. Math., 46, 171-188 (1986) · Zbl 0604.35039
[22] Rosenau, P., Free-energy functionals at the high-gradient limit, Phys. Rev. A, 41, 2227-2230 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.